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(I)
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(IV)
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The Melancholy of Prof. Y (Part I)

We start 
laboratory 
assignment.

At most 3 students will 
be assigned to a lab. 

I need at least 
one student to 
start a new 
project.

How can I 
continue
my research!?

Prof. Y       0
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(V)

serial dictatorship
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The Melancholy of Prof. Y (Part II)

We use a new 
mechanism 
in this year.

Good!

I prefer Prof. Y to 
other professors.

Me too.
Me too.

I prefer Alice 
to Becky 
and Carol.

This mechanism 
ignores my
preference...

Prof. Y     2

3
1

1
ML
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: S = {s1, . . . , sn}
: C = {c1, . . . , cm}

�s: s C

�c: c S

qc: c ( )

μ: μ(c) c
μ(s) s

c ∈ C |μ(c)| ≤ qc μ
(feasible)
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DA Deferred Acceptance, Gale and Shapley
(1962)

k

.

(
).

.

.

16 / 52

DA

s1 c1 c2 c3
s2 c1 c3 c2
s3 c2 c1 c3
s4 c1 c3 c2
s5 c3 c2 c1

c1 qc1 = 2 s1 s3 s2 s4 s5
c2 qc2 = 2 s3 s2 s5 s1 s4
c3 qc3 = 1 s1 s4 s5 s2 s3
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DA

?

s c , c
s′

s c ,
c
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(Kamada and Kojima, 2015)

: S = {s1, . . . , sn}
: C = {c1, . . . , cm}
: R = {r1, r2, . . .}, r

qc, qr

: (

)

( 100 10
10 ) (Artificial Cap, AC-DA)
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)

s μ(s) c |μ(c)| < qc
c r∑

c′∈r |μ(c′)| = |μ(r)| < qr c

s μ(s) c |μ(c)| < qc,
c μ(s) r |μ(r)| = qr

c
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(

)

s1 c1 c2
s2 c2 c1

q{c1,c2} = 1

c1 qc1 = 1 s2 s1
c2 qc2 = 1 s1 s2
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Flexible DA (Kamada and Kojima, 2015)

DA

(c1 → c2 → c1 → . . .) .

.

.
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Flexible DA

s1 c1 c3 c2
s2 c1 c3 c2
s3 c2 c1 c3
s4 c2 c1 c3
s5 c2 c1 c3

q{c1,c2} = 4, c1 → c2 → c1 . . .

c1 s2 s3 s5 s1 s4
c2 s5 s4 s1 s2 s3

c3 s2 s3 s1 s4 s5
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Flexible DA

( )

AC-DA
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(Fragiadakis et al., 2015)

c pc

∑
c∈C pc n

μ c , pc ≤ |μ(c)| ≤ qc

s c = μ(s) c′

|μ(c′)| < qc′ |μ(c)| > pc c′
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(

)
(Ueda, Fragiadakis,

Iwasaki, Troyan, & Yokoo, 2012)
DA

Extended-seat DA:
Multi-stage DA:

(Goto et al., 2014)
29 / 52

(
)

s1 c2 c3 c1
s2 c3 c2 c1

c1 pc1 = 1 qc1 = 1 s2 s1
c2 pc2 = 0 qc2 = 1 s2 s1
c3 pc3 = 0 qc3 = 1 s1 s2
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Extended-Seat DA

c ( ) c∗ (
− )

Flexible DA

,

3 pc = 1, n = 5
1, 5− 3 = 2

s1 c1 c∗1 c3 c∗3 c2 c∗2
s2 c1 c∗1 c3 c∗3 c2 c∗2
s3 c2 c∗2 c3 c∗3 c1 c∗1
s4 c2 c∗2 c3 c∗3 c1 c∗1
s5 c2 c∗2 c3 c∗3 c1 c∗1

c1 s2 s1 s3 s4 s5
c2 s5 s4 s3 s2 s4
c3 s3 s1 s2 s4 s5

c∗1 s2 s1 s3 s4 s5
c∗2 s5 s4 s3 s2 s4
c∗3 s3 s1 s2 s4 s5
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Extended-seat DA

32 / 52

1

2

3

4

5

6

33 / 52

DA

DA
?

(Kojima,
Tamura, & Yokoo, 2014).
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A set of doctors D = {d1, . . . , dn}
A set of hospitals H = {h1, . . . , hm}.
A set of contracts X. A contract can contain some additional
information besides the doctor and the hospital (e.g., wages,
working hours).

�d: a strict preference ordering of doctor d over Xd.

Distributional constraints and hospital preferences are
aggregated into a preference of a representative agent (the
hospitals H).

The preference of H is represented as a function
f : 2X → R ∪ {−∞}.
If X ′ ⊆ X is not hospital-feasible (i.e., it violates some
distributional constraint), f(X ′) = −∞, and it is normalized
by f(∅) = 0.
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From X ′, Chd(X
′) chooses {(d, h)}, where (d, h) is d’s most

preferred contract in X ′ (or ∅ if no contract is acceptable).

ChD(X
′) =

⋃
d∈D Chd(X

′).
ChH(X ′) is given as argmaxX′′⊆X′ f(X ′′).
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Deferred Acceptance (DA)

1 Re ← ∅.
2 X ′ ← ChD(X \Re), X ′′ ← ChH(X ′).
3 If X ′ = X ′′ then return X ′, otherwise, Re ← Re ∪ (X ′ \X ′′),

go to 2.

Re: rejected set, which represents a set of contracts that are
proposed by doctors and rejected by hospitals. Doctors are not
allowed to propose a contract in Re.
Initially, Re is empty.
Thus, doctors can choose their most preferred contracts and
propose to hospitals. This set is X ′.
Then, hospitals choose the most preferred subset X ′′ from X ′.
If no contract is rejected, the mechanism terminates.
Otherwise, the rejected contracts are added to Re, and the
mechanism repeats the same procedure.
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Hatfield-Milgrom (HM)-

Notation: X ′ + x := X ′ ∪ {x} and X ′ − x := X ′ \ {x}. In
particular, if x = ∅, X ′ + x = X ′ − x = X ′.

Definition (Hatfield-Milgrom (HM)-stability)

We say a matching X ′ is HM-stable if X ′ = ChH(X ′) = ChD(X
′)

holds, and there exists no x ∈ X \X ′ such that x ∈ ChH(X ′ + x)
and x ∈ ChD(X

′ + x) hold.
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M�-

Definition (M�-concavity)

We say that f is M�-concave when for all Y, Z ⊆ X, for all
y ∈ Y \ Z, there exists z ∈ Z \ Y ∪ {∅} such that
f(Y ) + f(Z) ≤ f(Y − y + z) + f(Z − z + y) holds.
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DA (f M�- )

Theorem

The time complexity of the generalized DA mechanism is O(|X|3),
assuming f can be calculated in constant time.

Theorem

The generalized DA mechanism is strategyproof for doctors. Also,
it always produces an HM-stable matching, and the obtained
matching is doctor-optimal among all HM-stable matchings.
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M�-

Question: when/how f can be M�-concave? How can we
aggregate ordinal preferences of hospitals, stability requirements,
and distributional constraints into f?

WLOG, we assume f is represented by
f(X ′) = f̃(X ′) + f̂(X ′):

f̃ represents hard distributional constraints; it returns 0 when
X ′ is hospital-feasible, and otherwise, −∞.
f̂ represents soft preference over hospital-feasible contracts; it
returns a bounded non-negative value.

Let F = {X ′ ⊆ X | f̃(X ′) 
= −∞}, i.e., F is a family of
hospital-feasible contracts.

Theorem

If f is M�-concave and f(∅) = 0, then (X,F ) is a matroid.

Hard distributional constraints are required to constitute a matroid
to make f M�-concave.
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( )

( )
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⎛
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A X, F X
( )

1 ∅ ∈ F ,

2 X ′ ∈ F X ′′ ⊂ X ′ X ′′ ∈ F ,

3 X ′, X ′′ ∈ F |X ′| > |X ′′| X ′′ ∪ {x} ∈ F
x ∈ X ′ \X ′′ .
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( )

Definition ( )

X X F 3
(X,F)

1 ∅ ∈ F ,

2 X ′ ∈ F X ′′ ⊂ X ′ X ′′ ∈ F ,

3 X ′, X ′′ ∈ F |X ′| > |X ′′| X ′′ ∪ {x} ∈ F
x ∈ X ′ \X ′′

( )
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Example ( )

k X F = {X ′ | X ′ ⊆ X, |X ′| ≤ k}
(X,F)

Example ( )

(X1,F1), . . . , (Xk,Fk) Xi

(X,F), X =
⋃

1≤i≤k Xi,

F = {X ′ | X ′ =
⋃

1≤i≤k X
′
i, where X ′

i ∈ Fi}

Example ( )

(X,F) k
k- (X, F̃), F̃ = {X ′ ∈ F | |X ′| ≤ k}
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Hard distributional constraints (f̃) are required to constitute a
matroid to make f = f̃ + f̂ M�-concave.

Checking matroid conditions 1 and 2 is trivial, checking 3 is
not too difficult.

1 ∅ ∈ F .

2 If X ′ ∈ F and X ′′ ⊂ X ′, then X ′′ ∈ F holds.

3 If X ′, X ′′ ∈ F and |X ′| > |X ′′|, then there exists x ∈ X ′ \X ′′

such that X ′′ + x ∈ F .

Also, there exists a vast literature on matroid theory; it is
usually sufficient to show that the hard distributional
constraints can be mapped into existing results (no need for
reinventing the wheel).

Question: what kind of conditions f̂ should satisfy to make
f = f̃ + f̂ M�-concave, given that hard distributional constraints
(f̃) constitute a matroid?
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Theorem (sum of weights)

Suppose (X,F ), where F is a family of hospital-feasible contracts,
is a matroid and f̂(X ′) is given as

∑
x∈X′ w(x), where each

weight is positive and unique. Then, f = f̃ + f̂ is M�-concave.

If there exists a total preference ordering �H over X, e.g.,
x1 �H x2 �H x3 �H . . ., such a preference can be represented
using w(·) such that w(x) > w(x′) holds when x �H x′.
Several other alternative conditions are presented in (Kojima,
Tamura, & Yokoo, 2014).
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Suppose you have a matching problem with constraints, and initial
ideas on hard distributional constraints and stability requirements.

1 Check whether (X,F ), where F is a family of
hospital-feasible contracts, is a matroid. If not, modify
distributional constraints so that (X,F ) becomes a matroid.

2 Compose f̂ , which reflects stability, such that it satisfies one
of the sufficient conditions described in this paper.

Modify the stability definition as necessary, by adding more
desirable properties, relaxing too demanding requirements, or
simply introducing tie-breaking.

Now, your jobs are done; the off-the-shelf mechanism does the
rest.
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X ′ ∈ F if |X ′
c| ≤ qc for all c

(X,F)

(Xc,Fc), where Fc = {X ′ ⊆ Xc | |X ′| ≤ qc}
(X,F)

(Kamada and Kojima, 2015):

X ′ ∈ F r |X ′
r| ≤ qr (X ′

r =
⋃

c∈r X
′
c)

(X,F)

1 r c ∈ r
2 1 qr-
3 2
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