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Abstract

Developing interaction rules/protocols among multiple
agents is one of the central research topics in multi-agent
systems. For cooperative agents, we need to develop proto-
cols so that agents can achieve some common goal if they
follow the protocol. Also, for competitive/selfish agents, we
need to design mechanisms/protocols so that some socially
desirable outcome can be achieved, even if agents act self-
ishly. This article presents a brief overview of the author’s
works on this topic over the last five years.

1. Protocol Design for Cooperative Agents

1.1. Distributed Constraint Satisfaction

When there are multiple agents in a shared environment,
there usually exist constraints among the possible actions of
these agents. A distributed constraint satisfaction problem
(distributed CSP) is a problem to find a consistent combi-
nation of actions that satisfies these inter-agent constraints
[34, 35]. The research on constraint satisfaction problems
has a long and distinguished history in AI as a general
framework that can formalize various application problems
[14]. Similarly, a distributed CSP is a fundamental problem
for achieving coordination among agents and can formal-
ize various application problems in multi-agent systems.

A typical example of a CSP is a puzzle called 8-queens
(Figure 1). The objective is to place eight queens on a chess
board (8×8 squares) so that these queens will not threaten
each other. This problem is called a constraint satisfaction
problem since the objective is to find a configuration that
satisfies the given conditions (constraints).

Formally, a CSP consists of n variables x1, x2, . . . , xn,
whose values are taken from finite, discrete domains
D1, D2, . . . , Dn, respectively, and a set of constraints on

Figure 1. Example of a constraint satisfaction
problem (8-queens)

their values. Solving a CSP is equivalent to finding the as-
signment of values to all variables such that all constraints
are satisfied. Since constraint satisfaction is NP-complete
in general, a trial-and-error exploration of alternatives is in-
evitable.

A distributed CSP is a CSP in which the variables and
constraints are distributed among automated agents. Each
agent has some variables and tries to determine their values.
However, there also exist inter-agent constraints, and the
value assignment must satisfy these inter-agent constraints.

Various application problems in multi-agent systems that
involve finding a consistent combination of agent actions
can be formalized as distributed CSPs. One example is a
distributed resource allocation task, such as a distributed
sensor network [13], a distributed resource allocation prob-
lem in a communication network described in [2], or a chan-
nel assignment problem in a cellular radio network [38].

In these problems, each agent has its own tasks, and
there are several ways (plans) to perform each task.
Since resources are shared among agents, there exist con-
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straints/contention between plans. The goal is to find the
combination of plans that enables all the tasks to be ex-
ecuted simultaneously. Many other application prob-
lems that involve finding a consistent combination of agent
actions/decisions (e.g., distributed scheduling and dis-
tributed interpretation problems) can be formalized as
distributed CSPs.

In our earlier works, we developed a series of algorithms
for solving distributed CSPs, including a basic backtrack-
ing algorithm called asynchronous backtracking, a more
efficient algorithm called asynchronous weak-commitment
search algorithm, in which the order of agents/variables is
changed dynamically, and an iterative improvement algo-
rithm called the distributed breakout algorithm [32, 34, 35,
36, 37].

The last five years have seen significant advances in var-
ious aspects of distributed CSPs. For example, we have
shown that by introducing nogood learning, i.e., resolv-
ing/recording effective nogoods, the performance of the
asynchronous weak-commitment search algorithm (as well
as the asynchronous backtracking algorithm) can be signif-
icantly improved so that they can be comparable to the dis-
tributed breakout algorithm [6]. Furthermore, we have pro-
posed an algorithm that is drastically different from tradi-
tional algorithms, i.e., it utilizes a market mechanism for
solving satisfiability problems (SAT) [31, 30]. Also, we
have examined a method for handling the case where the
local problem of each agent is complex [7].

In many real-life applications, problems are over-
constrained, i.e., there exists no solution that satisfies
all constraints completely. In that case, we need to set-
tle for an incomplete solution. We have proposed the for-
malization of hierarchical distributed CSPs, in which con-
straints are ordered by their relative importance [5]. If
a problem is over-constrained, we are going to give up
less important constraints. Furthermore, we have de-
veloped an algorithm called Asynchronous Distributed
OPtimization (ADOPT) that can solve more general dis-
tributed constraint optimization problems [18, 19]. In
this algorithm, each agent acts concurrently and asyn-
chronously as in the asynchronous backtracking algo-
rithm. Each agent keeps on increasing the threshold for
backtracking. Then, they eventually find an optimal solu-
tion.

A major motivation for solving a distributed CSP with-
out gathering all information into one server is the concern
about privacy/security. However, existing distributed CSP
algorithms leak some information during the search pro-
cess, and privacy/security issues are not dealt with formally.
To alleviate this problem, we have developed an algorithm
that utilizes a public key encryption scheme so that the al-
gorithm does not leak information, i.e., agents cannot obtain
any additional information on the value assignment of vari-

ables that belong to other agents [49].
Many researchers have now started working on dis-

tributed CSP. There have been workshops on distributed
CSP at CP-2000 (Int. Conf. on Principles and Practice of
Constraint Programming), IJCAI-2001, AAMAS-2002, and
IJCAI-2003. The next one will be at CP-2004.

1.2. Multi-agent POMDP

Partially Observable Markov Decision Processes
(POMDPs) are emerging as a popular approach for model-
ing multi-agent teamwork where a group of agents work to-
gether to jointly maximize a reward function [22] This
framework is quite important since it is theoretically well
founded and can be used for re-formalizing existing mod-
els of multi-agent systems.

Even if the underlying system can be modeled as a
POMDP, if there exist multiple agents, then the system in-
cluding other agents is no longer POMDP from a single
agent perspective. We have developed an innovative way to
represent the belief state of an agent. By using this represen-
tation, we can model the system including other agents as
a POMDP, given that the policies of other agents are fixed
[21].

By utilizing this characteristic, we can efficiently find an
optimal policy (i.e., a best response) for an agent by ap-
plying dynamic programming [21]. Also, this representa-
tion can precisely define the effect of communication; thus
we can also find an optimal policy when communication re-
quires certain costs [20].

2. Mechanism Design for Competitive Agents

2.1. False-name Bids

Internet auctions have become an especially popular part
of Electronic Commerce (EC). Various theoretical and prac-
tical studies on Internet auctions have already been con-
ducted. Among these studies, those on combinatorial auc-
tions have lately attracted considerable attention ([3] is a
good survey article). Although conventional auctions sell
a single good at a time, combinatorial auctions sell mul-
tiple goods with interdependent values simultaneously and
allow the bidders to bid on any combination of goods. In
a combinatorial auction, a bidder can express complemen-
tary/substitutable preferences over multiple goods. By tak-
ing into account such preferences, economic efficiency can
be enhanced.

Although the Internet provides an excellent infrastruc-
ture for executing combinatorial auctions, we must consider
the possibility of new types of cheating. For example, a bid-
der may try to profit from submitting false bids under fic-
titious names such as multiple e-mail addresses. Such an
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action is very difficult to detect since identifying each par-
ticipant on the Internet is virtually impossible. We call a
bid made under a fictitious name a false-name bid. Also,
we say a protocol is false-name-proof if truth-telling with-
out using false-name bids is a dominant strategy for each
bidder. This is a natural extension of the traditional defini-
tion of strategy-proofness.

The problems resulting from collusion have been dis-
cussed by many researchers [15, 16, 17]. Compared with
collusion, a false-name bid is easier to execute on the In-
ternet since obtaining additional identifiers, such as another
e-mail address, is cheap. We can consider false-name bids
as a very restricted subclass of collusion.

In [39, 45], we have analyzed the effects of false-name
bids on combinatorial auction protocols. The obtained re-
sults can be summarized as follows.

• The Vickrey-Clarke-Groves (VCG) mechanism [1, 4,
29], which is strategy-proof and Pareto efficient if there
exists no false-name bid, is not false-name-proof.

• There exists no false-name-proof combinatorial auc-
tion protocol that satisfies Pareto efficiency.

• We identify one sufficient condition where the VCG
mechanism is false-name-proof, i.e., a surplus function
is concave over bidders.

Also, we have developed a series of protocols that are
false-name-proof in various settings: a combinatorial auc-
tion protocol called the Leveled Division Set (LDS) proto-
col [40, 41, 42], multi-unit auction protocols [11, 12, 28,
44], and double auction protocols [23, 24, 43, 46].

Furthermore, we have identified a distinctive class of
combinatorial auction protocols called a Price-oriented,
Rationing-free (PORF) protocol, which can be used as a
guideline for developing strategy/false-name proof proto-
cols [33]. The outline of a PORF protocol is as follows: (i)
for each bidder, the price of each bundle of goods is deter-
mined independently of his/her own declaration (while it
can depend on the declarations of other bidders), (ii) we al-
locate each bidder a bundle that maximizes his/her util-
ity independently of the allocations of other bidders (i.e.,
rationing-free).

Although a PORF protocol appears quite different from
traditional protocol descriptions, surprisingly, it is a suffi-
cient and necessary condition for a protocol to be strategy-
proof. Furthermore, we show that a PORF protocol satisfy-
ing additional conditions is false-name-proof; at the same
time, any false-name-proof protocol can be described as a
PORF protocol that satisfies the additional conditions. A
PORF protocol is an innovative characterization of strategy-
proof protocols and the first attempt to characterize false-
name-proof protocols. Such a characterization is not only
theoretically significant but also useful in practice, since it

can serve as a guideline for developing new strategy/false-
name proof protocols. We have developed a new false-
name-proof protocol based on the concept of a PORF pro-
tocol.

2.2. Secure Protocols

We developed secure dynamic programming protocols
that utilize information security techniques [26, 47]. By
using this method, multiple agents can solve a combi-
natorial optimization problem among them (e.g., winner-
determination in combinatorial auctions) without leaking
their private information to other agents. More specifically,
in these methods, multiple servers cooperatively perform
dynamic programming procedures for solving a combinato-
rial optimization problem by using the private information
sent from agents as inputs. Although the servers can com-
pute the optimal solution correctly, the inputs are kept se-
cret from these servers. Such a secure protocol is important
when a fully trusted agent is not available, e.g., an auction-
eer cannot be fully trusted in a combinatorial auction.

Furthermore, we have developed a protocol that can per-
form the Vickrey-Clarke-Groves (VCG) mechanism for a
very general setting [27]. Also, even if a protocol itself is
strategy-proof, if the protocol is executed by utilizing a P2P
network, which does not have a centralized server, then par-
ticipants might have an incentive to deviate from the pro-
tocol [25]. We have developed a secure VCG-type protocol
that does not require third-party servers, i.e., agents can ex-
ecute the protocol by themselves [48].

2.3. Auctions under Asymmetric Information

In Internet auctions, it is often difficult to determine the
quality of auctioned goods. We consider a situation where
some experts can judge the quality of auctioned goods cor-
rectly, while many armatures cannot do so. We have devel-
oped a series of protocols that gives experts an incentive to
truthfully declare the quality; thus we can achieve Pareto ef-
ficient allocations in many cases [8, 9, 10].
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