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Abstract

We develop strategy/false-name-proof multi-unit auction
protocols for non-quasi-linear utilities. One almost univer-
sal assumption in auction theory literature is that each bid-
der has quasi-linear utility. However, in practice, a bidder
might have some kind of financial condition including bud-
get constraints. The Vickrey-Clarke-Groves (VCG) protocol
is designed to be truthful under the quasi-linear assump-
tion and will break down if this assumption does not hold.
We show with a simple modification, the VCG can handle
non-quasi-linear utilities. However, there are possibilities
that the modified VCG sacrifices significant efficiency loss,
since it only uses the gross utilities for determining tentative
allocation and payments. Also, it has been shown that the
VCG is vulnerable to a false-name bid which is a new type
of cheating on the Internet. To improve efficiency without
collecting the entire utility functions and guarantee false-
name-proofness, we develop a false-name-proof open as-
cending auction protocol.

1 Introduction

Internet auctions have become an important part of Elec-
tronic Commerce, and the amount of transactions is increas-
ing annually. Various goods are traded in Internet auctions.

In recent years, many theoretical/practical studies on
Internet auctions have been conducted [5, 10]. One al-
most universal assumption of these works is that each bid-
der has quasi-linear utility, i.e., a bidder’s utility is de-
fined as the difference between her gross utility of allo-
cated goods and her payment. One notable exception is
works on budget-constrained bidders in single-item/multi-
unit auctions [2, 3, 6]. In these works, a bidder is assumed
to have budget constraints, i.e., she cannot pay more than a

∗Y. Sakurai is a JSPS Research Fellow.

predefined budget limit. Her utility becomes minus infinity
when her payment exceeds her limit.

We can generalize such utilities to more general cases,
such as piece-wise-quasi-inear utility. For example, a bid-
der can pay up to certain amount from her own budget. If
the payment exceeds that amount, she needs a loan and must
pay interest. Such a utility can be represented as a separable
utility function, where a bidder’s utility is defined as the dif-
ference between her gross utility and an increasing function
of her payment. In more general cases, we consider non-
separable utility in which the allocated goods and payment
interact with each other and determine the utility.

For single-item/multi-unit auctions, we can apply the
well-known Vickrey-Clarke-Groves (VCG) protocol [4, 8,
13] when bidders have quasi-linear utilities. However, the
VCG critically depends on the quasi-linear assumption due
to Gibbard-Satterthwaite impossibility theorem [7, 12] and
will break down if this assumption does not hold. For ex-
ample, in [2], Borgs et al. showed that the VCG is no longer
strategy-proof if bidders have budget limits.

Also, for Internet auctions, Yokoo et al. pointed out the
possibility of a new type of fraud called false-name bids
that exploit the anonymity available on the Internet [11, 16].
False-name bids are submitted under fictitious names, e.g.,
multiple e-mail addresses. Such deception is very difficult
to detect, since identifying each participant on the Internet
is virtually impossible. Although several false-name-proof
multi-unit auction protocols have been developed, they also
assume quasi-linear utilities.

We show a simple modification in which the VCG can
handle non-quasi-linear utilities. The basic idea of this
modification is that tentative allocation and payments are
determined assuming quasi-linear utilities, but each bidder
can choose the actual number of units to obtain based on
her non-quasi-linear utility. More specifically, we utilize a
general framework for describing strategy-proof protocols
called the Price-Oriented Rationing-Free (PORF) protocol
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introduced in [14]. We prove that if any auction protocol,
which can be described as the PORF protocol, satisfies al-
location feasibility in quasi-linear cases, it is guaranteed to
satisfy allocation feasibility in non-quasi-linear utility case
as long as some additional conditions are satisfied. The
VCG can be described as the PORF protocol and satisfy
allocation feasibility. Moreover, a new false-name-proof
multi-unit auction protocol based on an existing false-name-
proof protocol, which is called Groves Mechanism with
SubModular Approximation (GM-SMA)[15], can also han-
dle non-quasi-linear utilities with the same modification.
These modified protocols only use the gross utility of each
bidder. Requiring only gross utility can be an advantage
since collecting entire utility functions can be costly. How-
ever, determining tentative allocation and payments without
considering actual non-quasi-linear utilities can cause sig-
nificant efficiency loss.

To improve efficiency without collecting entire util-
ity functions, we develop a new false-name-proof, open
ascending auction protocol called the Non-Quasi-linear
Ascending-price OPtion allocation (NQ-AOP) protocol.
The NQ-AOP is based on an existing false-name-proof
protocol called Ascending-price OPtion allocation protocol
(AOP) [9] which is developed by modifying the Ausubel
auction [1]. In the NQ-AOP, a bidder declares a demand
for a series of prices announced by the auctioneer. For each
announced price and for each bidder, the auctioneer calcu-
lates the aggregated demand of other bidders and allocates
an option to the bidder to obtain the remaining units at the
current price. When the total demand becomes less than the
available units, each bidder can choose the optimal option
among the allocated options. Our simulation results show
that this protocol obtains better social surplus than the mod-
ified protocols when bidders have budget constraints.

2 Model

Assume K units of homogeneous goods and a set of bid-
ders N = {1, 2, . . . , n} where n ≥ K . Bidder i determines
her utility by privately observing a parameter or signal, θi.
We refer to θi as the type of bidder i and assume θi is drawn
from set Θ. Let u(θi, k, p) denote the utility of the bidder
with type θi when she obtains k units and pays price p. We
assume u(θi, 0, 0) is normalized to 0.

First, we define quasi-linear utility which is commonly
used in auction theory literature. u(θi, k, p) is a quasi-linear
utility if it is defined as the difference between the gross
utility of the allocated goods and the payment:

u(θi, k, p) = v(θi, k) − p. (1)

Here, v(θi, k) indicates bidder i’s valuation of k units and
is identical to u(θi, k, 0).

Utility with budget constraints

Quasi-linear utility

Payment

Utility

Piece-wise-quasi-linear utility

Utility with budget constraints

Quasi-linear utility

Payment

Utility

Piece-wise-quasi-linear utility

Figure 1. Non-quasi-linear utilities

Next, separable utility u(θi, k, p) is represented as the
difference between gross utility and an increasing function
of payment:

u(θi, k, p) = v(θi, k) − f(θi, p). (2)

Here, we assume that f is an increasing function of p and is
normalized at f(θi, 0) = 0. Without loss of generality, we
assume ∀p, f(θi, p) ≥ p holds.

Utility with budget constraints and a piece-wise quasi-
linear utility can be represented as special case of a separa-
ble utility function. Separable utility is a utility with budget
constraints, if for a budget limit bi,

f(θi, p) =
{

p, p ≤ bi

∞, otherwise. (3)

We can generalize utility with budget constraints to more
general cases, such as piece-wise quasi-linear utility. A sep-
arable utility is piece-wise quasi-linear if, for a series of
budget limits bi,1, bi,2, . . . , bi,t,

f(θi, p) =

⎧⎨
⎩

α1p, p ≤ bi,1

αjp, bi,j−1 ≤ p < bi,j

αtp, bi,t < p .
(4)

Here, we assume αj ≥ 1 for all j. With piece-wise quasi-
linear utility, we can represent a case where a bidder can
pay up to certain amount from her own budget, but if her
payment exceeds that amount, she needs a loan and must
pay interest. Figure 1 illustrates a quasi-linear utility, a util-
ity with budget constraints, and a piece-wise quasi-linear
utility.

In the most general case, we can consider inseparable
utility in which the allocated goods and the payment can in-
teract with each other and determine the utility. For insep-
arable utility u(θ, k, p), we assume the following condition
holds:

∀k, ∀p ≤ p′ u(θi, k, p) − u(θi, k, p′) ≥ p′ − p. (5)

This condition means that the utility decrease caused by the
payment increase is at least (or more than) linear.

Now, we introduce several properties that auction proto-
cols should satisfy. An auction protocol is individually ra-
tional if each auction participant does not suffer any loss.
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An auction protocol is strategy-proof if for each bidder,
declaring her true type is a dominant strategy, i.e., the op-
timal strategy for maximizing her utility regardless of other
bidders’ actions. An auction protocol is false-name-proof if
for each bidder, declaring her true type using a single iden-
tifier, while she can use false-name bids, is a dominant strat-
egy.

3 Limitation of VCG

The VCG is recognized as a strategy-proof protocol in
quasi-linear utility case. The VCG for K units of homoge-
neous goods is defined as follows.

• Bidder i declares her type θi to the auctioneer. Let us
denote (v(θi, 1), · · · , v(θi, k), · · · , v(θi, K)) as a valu-
ation vector based on declared type.

• The auctioneer determines an allocation and pay-
ments. For a set of feasible allocation K where
K = {k = (k1, · · · , kN )|∑i∈N ki ≤ K}, we
define k∗ as an optimal allocation that maximizes
the sum of the declared valuations in K, fomally,
k∗ = arg maxk

∑
i∈N v(θi, ki). Aggregated utility

function V ∗ is defined as follows: V ∗(K, ΘN) =∑
i∈N v(θi, k

∗
i ) where k∗

i ∈ k∗. Then bidder i’s price
for k∗

i units, pi(k∗
i ), is calculated as follows:

pi(k∗
i ) = V ∗(K, ΘN\{i}) − V ∗(K − k∗

i , ΘN\{i}).
(6)

Borgs et al. [2] showed an example where the VCG does
not satisfy strategy-proofness for bidders with budget con-
straints. In their example, bidder i with budget limit bi is as-
sumed to have linear gross utility, i.e., her utility for k units
is given as kci, where ci is a unit value. The VCG is ap-
plied to modified valuation vector (v′(θi, 1), · · · , v′(θi, K))
where v′(θi, k) = min(kci, bi). Applying this modified
valuation vector guarantees that each winner’s payment
does not exceed the amount of her budget.

Example 1 Assume 2 bidders take part in an auction for
2 units of homogeneous goods. Suppose ci and bi as
(c1, b1) = (10, 10) and (c2, b2) = (3, 5).

We compute the VCG payment using modified valuation
vector (v′(θi, 1), v′(θi, 2)) = (min(ci, bi), min(2ci, bi)).
Bidders 1 and 2’s valuation vectors are calculated as
(10, 10) and (3, 5). Thus, bidders 1 and 2 can obtain 1
unit at prices 2 and 0, respectively. The utility of bidder 1 is
calculated as 10 − 2 = 8.

If bidder 1 declares her bids as (c1, b1) = (5, 10) by
underbidding a value per unit, she can get 2 units at price
5. As a result, bidder 1’s utility becomes 20 − 5 = 15.
Bidder 1 can increase her utility by underbidding.

4 New sealed-bid auction protocols

We show that the VCG can handle non-quasi-linear util-
ities with simple modification. Moreover, we introduce a
false-name-proof auction protocol called multi-unit GM-
SMA that can handle non-quasi-linear utilities.

4.1 PORF protocol

We describe a general framework for describing
strategy-proof protocols called a PORF protocol. Describ-
ing a protocol as a PORF protocol simplifies proving that it
is strategy/false-name-proof. The following definition of a
PORF protocol covers both cases of quasi-linear and non-
quasi-linear utilities.

• Bidder i declares a type θ̃i, which is not necessarily her
true type θi.

• For bidder i and for any number of unit k ≤ K , each
price is defined. This price must be determined inde-
pendently of i’s declared type θ̃i, while it can be de-
pendent on the declared types of other bidders.

• For bidder i, the optimal number of units to maximize
u(θi, k, pi(k)) is allocated. Here, we refer pi(k) to
bidder i’s price for k units and pi(k) ≤ pi(k′) holds
for ∀k < k′. If multiple optimal allocations exist, one
of them is determined.

Furthermore, a PORF protocol guarantees individual ratio-
nality, since each bidder can choose the optimal number of
units to maximize her utility after annoucing her price for
each unit.

Now, we show if a protocol described as a PORF pro-
tocol satisfies allocation feasibility for quasi-linear utili-
ties, it can also satisfy allocation fesibility for non-quasi-
linear utilities. We introduce one additional condition called
steepness condition. Inseparable utility u(θi, k, pi(k)) sat-
isfies steepness condition if the following condition holds:
∀k < k′, pi(k),

u(θi, k, 0) − u(θi, k, pi(k))
≤ u(θi, k

′, 0) − u(θi, k
′, pi(k)). (7)

This condition means that if the allocated number of units
increases, the utility decrease caused by the price increase
does not become smaller. For a separable utility function,
this condition is automatically satisfied, since u(θi, k, 0) −
u(θi, k, pi(k)) equal f(θi, pi(k)) for all k.

Theorem 1 If a protocol described as a PORF protocol
can satisfy allocation feasibility for quasi-linear utilities, in
non-quasi-linear utility case with the steepness condition, it
can also satisfy allocation feasibility when the auctioneer
calculates a tentative allocation and the prices only based
on the gross utility.
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Proof 1 Assume bidder i’s utility is maximized by obtaining
k units if we assume bidder i’s utility is quasi-linear. Then
for all k′ > k, the following condition must hold:

u(θi, k, 0) − pi(k) ≥ u(θi, k
′, 0) − pi(k′). (8)

We will prove u(θi, k, pi(k)) ≥ u(θi, k
′, pi(k′)), i.e., bid-

der i does not want to obtain k′ units, where k′ > k. Thus,
we can guarantee allocation feasibility even if the utilities
are non-quasi-linear. From formulas (5), we obtain:

u(θi, k, pi(k)) ≥ u(θi, k, 0)−u(θi, k
′, 0)+u(θi, k

′, pi(k)).

Also from (7), we obtain:

u(θi, k, 0) − u(θi, k
′, 0) ≥ pi(k) − pi(k′).

Also from (8), we get:

u(θi, k
′, pi(k)) ≥ pi(k′) − pi(k) + u(θi, k

′, p′i(k
′)).

Therefore,

u(θi, k, pi(k)) ≥ u(θi, k, 0) − u(θi, k
′, 0)

+u(θi, k
′, pi(k))

≥ pi(k) − pi(k′) + u(θi, k
′, pi(k))

≥ pi(k) − pi(k′) + pi(k′)
−pi(k) + u(θi, k

′, pi(k′))
= u(θi, k

′, pi(k′))

Thus, we obtain u(θi, k, pi(k)) ≥ u(θi, k
′, pi(k′)).

4.2 Modified VCG

When each bidder’s utility is quasi-linear, the VCG can
be described as a PORF protocol. The VCG price of bid-
der i for any k units is determined as follows:

pi(k) = V ∗(K, ΘN\{i}) − V ∗(K − k, ΘN\{i}). (9)

When each bidder’s utility is non-quasi-linear, we redefine
an aggregated utility function V ∗ as follows:

V ∗(K, ΘN) = max
k∈K

∑
u(θi, ki, 0). (10)

In the VCG for non-quasi-linear utilities, the auctioneer cal-
culates a tentative allocation and the prices only based on
the gross utility, i.e., applying formulas (9) and (10). Since
the VCG satisfies allocation feasibility for quasi-linear util-
ity [15], it is also guaranteed to satisfy allocation feasibility
for non-quasi-linear utility by Theorem 1.

Example 2 Assume 2 bidders in an auction for 2 units,
and bidders 1 and 2’s gross utility (v(θi, 1), v(θi, 2)) are
(10, 15) and (8, 16), respectively.

The VCG prices of bidder 1 are calculated as 8 for 1 unit
and 16 for 2 units. The prices of bidder 2 are calculated as
5 for 1 unit and 15 for 2 units. Here, assume that bidders
1 and 2 have a budget limit of 7 and 8, respectively. As
a result, while bidder 1 obtains no items since her prices
exceed her budget, bidder 2 can get 1 unit at 5.

4.3 Modified Multi-unit GM-SMA

For bidders with quasi-linear utility, a false-name com-
binatorial auction protocol called the GM-SMA is proposed
that can be described as a PORF protocol. Now, we modify
the GM-SMA for a multi-unit auction.

In a multi-unit GM-SMA, we define submodular approx-
imation as follows. Function U∗(k, ΘS) defined below is
called a submodular approximation of V ∗. U∗(k, ΘS) is
defined as max

∑
i∈S v′(θi, k) for S ⊆ N . v′ is a func-

tion that satisfies v′(θi, k) ≥ v(θi, k) for all i, k. Then U∗

is submodular if it satisfies the following condition for all
S ⊆ N, k′ + k′′ = k:

U∗(k′, ΘS) + U∗(k′′, ΘS) ≥ U∗(k, ΘS). (11)

For a multi-unit auction, if each bidder’s marginal utility de-
creases, the aggregated utility of multiple bidders becomes
submodular. The marginal utility means an increase in bid-
der’s utility as a result of obtaining one additional unit. We
choose v′ to diminish the marginal utility. More specif-
ically, for any k, k′, k′′ where k′ + k′′ = k, k′ ≤ k′′,
v′(θi, k

′) + v′(θi, k
′′) ≥ v′(θi, k).

The multi-unit GM-SMA price is calculated as follows:

pi(k) =

⎧⎨
⎩

0 k = 0
U∗(K, ΘN\{i})

− V ∗(K − k, ΘN\{i}) k �= 0.
(12)

Note that we use U∗ for the first term in the above formula
when k �= 0.

Since the multi-unit GM-SMA is described as a PORF
protocol, it automatically satisfies individual rationality and
strategy-proofness. We need to show that it satisfies al-
location feasibility and false-name-proofness in non-quasi-
linear utility case.

Theorem 2 The multi-unit GM-SMA satisfies allocation
feasibility in non-quasi-linear utility case.

Proof 2 Due to space limitation, we omit the rigorous
proof. The multi-unit GM-SMA price is higher than the
VCG price at any number of units, because U∗ ≥ V ∗ holds.
Thus, the number of units obtained by each bidder in the
multi-unit GM-SMA is smaller than in the VCG. As a result,
multi-unit GM-SMA also satisfies allocation feasibility.

Theorem 3 For bidders with non-quasi-linear utilities, the
multi-unit GM-SMA protocol is false-name-proof.
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Proof 3 We show when bidder i′ obtains k′ units and bid-
der i′′ obtains k′′ units, then pk,i, i.e., the price to obtain
k = k′ ∪ k′′ with a single identifier i, is less than (or equal
to) pi′(k′) + pi′′(k′′). We can prove the case of more than
two identifiers in a similar way.

We assume N ′ = N \ {i, i′, i′′}. v′i,k is a marginal
utility for k-th unit, i.e., v′i,k = v′(θi, k) − v′(θi, k − 1),
where v′(θi, k) is chosen so that v′(θi, k) ≥ u(θi, k, 0) and
its marginal utility decreases (or remains the same). In-
equality v′i,k ≥ v′i,k+1 holds for all i, k because the de-
clared marginal utility is constant/diminishes. We can sort
v′i,k in decreasing order regardless of identifiers. We re-
fer v′(k) to the k-th highest value. Then U∗(K, ΘS) is
the sum from v′(1) to v′(K) among a set of bidders S, i.e.,
U∗(K, ΘS) =

∑
1≤k≤K v′(k). Therefore, the following

condition holds.

U∗(K − k′, ΘN ′) + U∗(K − k′′, ΘN ′)
≤ U∗(K − k, ΘN ′) + U∗(K, ΘN ′) (13)

Furthermore, bidder i′ and i′′ can get k′ and k′′ units, re-
spectively.

V ∗(K − k′, ΘN ′∪{i′′})
= u(θi′′ , k

′′, 0) + V ∗(K − k, ΘN ′) (14)
V ∗(K − k′′, ΘN ′∪{i′})

= u(θi′ , k
′, 0) + V ∗(K − k, ΘN ′) (15)

Thus, from formulas (12) to (15), we can calculate pi′(k′)+
pi′′(k′′) ≥ pi(k).

In practice, we can determine v′(θi, k) as follows. First
we define ua,i and ka.

ua,i = max
1≤k≤K

u(θi, k, 0)
k

Here, we refer ka to argmax u(θi, k, 0)/k:

v′(θi, k) =
{

k × ua,i k < ka

u(θi, k, 0) k ≥ ka.

We present an example of the multi-unit GM-SMA for
budget-constrained bidders.

Example 3 Assume 3 bidders take part in an auction
with 2 units. Bidder 1, 2, and 3’s gross utility’s vectors
(v(θi, 1), v(θi, 2)) are (6, 6), (0, 8), and (5, 5), respectively.

We use v′(θ2, 1) = 8/2 = 4 and v′(θi, ·) = v(θi, ·) for
other number of units and bidders. The multi-unit GM-SMA
prices are determined as follows. Bidder 1’s prices are 4 for
1 unit and 9 for 2 units, bidder 2’s are 11 for 1 unit and 11
for 2 units, and bidder 3’s are 4 for 1 unit and 10 for 2 units.

Here, we assume that bidder 1 has a budget of 3, and
bidder 3 has a budget of 5. As a result, bidder 1 cannot get
any items since 4 exceeds the budget. On the other hand,
bidder 3 obtains 1 unit at 4.

5 New open ascending auction protocol

5.1 NQ-RSA

First, we develop a false-name-proof sealed-bid auction
in which a bidder declares a demand function, called the
Non-Quasi-linear Residual Supply Auction (NQ-RSA) pro-
tocol. In the NQ-RSA, we use a residual supply function
facing each bidder to determine the prices. We define a de-
mand function di(c) of bidder i to maximize her utility at
unit price c:

di(c) = inf{k | argmax
k

u(θi, k, kc)}. (16)

Next, we define total demand d(c) as the sum of di(c)
among a set of bidders N : d(c) =

∑
i∈N di(c). Then, at

price per unit c, the residual supply function facing bidder
i denoted by s∼i(c), is defined as the difference between
total supply K and the number of units demanded by other
bidders: s∼i(c) = max{K − ∑

l �=i dl(c), 0}.
We can describe the NQ-RSA protocol as follows.

• Each bidder declares its own type θi.

• The auctioneer determines the demand function based
on declared type.

• The auctioneer generates a residual supply function
and calculate a price per unit ci(k) for each k units:
ci(k) = inf{c | s∼i(c) ≥ k}.

• For each bidder, the optimal number of units, denoted
by k∗

i , is determined so that it maximizes the utility:
k∗

i = arg maxk u(θi, k, kci(k)).

Example 4 Assume 2 units and 2 budget-constrained bid-
ders. The minimum price per unit is set to 0.1. They have
the following gross utility v(θi, k) and budget bi.

v(θi, 1) v(θi, 2) bi

Bidder 1 0 10 4
Bidder 2 6 12 6

In this case, each bidder declares a demand function di(c)
as shown in Table 1. When the unit price is 2.1, bidder 2’s
residual supply becomes 2. As a result, bidder 2 can get 2
units at unit price 2.1.

Since the NQ-RSA is described as a PORF protocol, it
automatically satisfies strategy-proofness. Thus, we need to
show that it satisfies allocation feasibility and false-name-
proofness.
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unit price c 0 2 2.1 3 3.1
d1(c) 2 2 0 0 0
d2(c) 2 2 2 2 0∑

i∈{1,2} di(c) 4 4 2 2 0

s∼1(c) 0 0 0 0 2
s∼2(c) 0 0 2 2 2

Table 1. Situation of Example 4

Theorem 4 In the NQ-RSA, the total number of allo-
cated units never exceeds the possible supply: formally,∑

i∈N k∗
i ≤ K .

Proof 4 By assuming
∑

i∈N k∗
i > K , we derive a contra-

diction. We set ct to the minimum unit per price among
all ci where k∗

i = di(ci). For all bidders i �= t, we get
di(ci) ≤ di(ct) based on ci ≥ ct. Thus, we can obtain
dt(ct) ≥ s∼t(ct) , based on dt(ct) = k∗

t > K−∑
i�=t k∗

i ≥
K − ∑

i�=t di(ct). This is inconsistent with the definition
of dt(ct). As a result, we can prove that

∑
i∈S di(ci) =∑

i∈S k∗
i ≤ K .

Theorem 5 The NQ-RSA is false-name-proof.

Proof 5 We show that bidder i cannot decrease her total
payment even if the bidder uses two identifiers, i′ and i′′,
compared with the payment when it uses one identifier, i.
Assume bidder i′ can get k′ units at unit price c′ and bidder
i′′ can get k′′ units at unit price c′′. We also assume c′ ≤ c′′.

By these assumptions, we can get di′(c′) ≤ K −∑
l �=i′ dl(c′) ≤ K − ∑

l �={i′,i′′} dl(c′) − di′′(c′′). Thus,
we obtain the following inequality: di′(c′) + di′′ (c′′) ≤
K − ∑

l �={i′,i′′} dl(c′) ≤ s i(c′). Thus, bidder i cannot
decrease her payment by submitting multiple bids.

5.2 NQ-AOP

We develop a false-name-proof auction protocol called
the NQ-AOP, which is developed by combining the tech-
niques of the AOP protocol and NQ-RSA.

• The auctioneer announces unit price cl at a round l ∈
{0, . . . , L}. Then each bidder declares demand based
on formula (16) at a current price. Here, we set the
following conditions related to unit price and demand:

– The auctioneer cannot announce a lower price
than the one called previously, i.e., ∀l, cl−1 < cl.

– Bidder i cannot declare higher demand than the
one declared previously, i.e., ∀c′ < c′′, di(c′′) ≤
di(c′).

• The auction is closed at a round of L when satisfying
d(cL) ≤ K < d(cL−1).

• Bidder i can choose the optimal supply to maximize
utility among a set of feasible supply {sl

i | 1 ≤ l ≤ L}:

sl
i = min{di(cl), s∼i(cl)}. (17)

Example 5 Let us consider a situation identical to Exam-
ple 4. As described in Table 1, the auctioneer raises unit
price cl. At round l when the auctioneer calls cl, each bid-
der declares a demand di(cl). When the unit price reaches
2.1, the aggregate demand is equal to 2 units. Therefore,
the auction ends at unit price 2.1, and the obtained result is
identical to Example 4.

Theorem 6 In the NQ-AOP, truth-telling is a weakly domi-
nant strategy for every bidder.

Proof 6 We prove that bidder i cannot increase supply and
improve her utility even if she declares d′i �= di(cl).

When bidder i under-declaring demand, i.e., d′i <
di(cl), supply sl

i decreases by formula (17).
When bidder i over-declaring demand, i.e., d′i > di(cl),

we consider two cases. If di(cl) ≥ s∼i(cl), bidder i’s sup-
ply sl

i remains s∼i(cl) even if she over-declares a demand.
If di(cl) < s∼i(cl), di(cl) is the optimal number of units by
formula (16). Thus, declaring d′i cannot improve her utility.

Theorem 7 In the NQ-AOP, truth-telling is an ex post per-
fect equilibrium even if every bidder can get any informa-
tion about other bidders.

Due to space limitation, we omit the rigorous proof. The
same argument for proving Theorem 6 can be applied to
any strategy of other bidders, as long as the strategy does
not react to bidder i’s action.

We can prove that the NQ-AOP satisfies allocation fea-
sibility and false-name-proofness by applying similar argu-
ment of Theorems 4 and 5, respectively.

6 Simulation Results

We evaluate the social surplus and seller’s revenue of
the modified VCG, multi-unit GM-SMA, and NQ-AOP for
budget-constrained bidders. No existing protocol satis-
fies strategy-proofness for multi-unit auctions in non-quasi-
linear cases. If false-name-proofness is also required, we
have to use the multi-unit GM-SMA or NQ-AOP.

We evaluate these three types of protocols in the follow-
ing setting. We assume each bidder’s preference is all-or-
nothing. First, binomial distribution B(K, p) derives the
number of desired units, i.e., ki. Then vi, which repre-
sents a valuation for ki units, is drawn randomly in [0, ki].
Next, assume bidder i’s budget limit is set in randomly
[0.5vi, 1.5vi]. We performed 100 instances with 10 units,
i.e., K = 10, and p = 0.1.
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Figure 2. Comparison of social surplus
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Figure 3. Comparison of seller’s revenue

The evaluation results of social surplus are given in Fig-
ure 2, and those of seller’s average revenue in Figure 3 by
varying the number of bidders. In both figures, we com-
pared the obtained results to the maximum sum of gross
utilities. The modified VCG and multi-unit GM-SMA ob-
tained similar results. Both protocols determine the prices
without considering each bidder’s budget limit. Thus, it is
going to be more likely that the prices exceed a bidder’s
budget limit and some units remain unsold. On the other
hand, the NQ-AOP got the best social surplus and revenue.

7 Conclusions

We developed new strategy-proof/false-name-proof auc-
tion protocols when bidders’ utilities are non-quasi-linear.
Studies on auction mechanism design almost universally as-
sume quasi-linear utility of each bidder. We demonstrated
that with a simple modification, the VCG and multi-unit
GM-SMA can handle non-quasi-linear utilities. Further-
more, we developed a new false-name-proof open ascend-
ing auction protocol. Our simulation results verified that
this protocol can obtain better social surplus than modified
protocols for budget-constrained bidders.

Our future works include a more detailed theoreti-

cal/experimental analysis of efficiency loss and developing
false-name-proof combinatorial auction protocols for bid-
ders with non-quasi-linear utilities.
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