
An Approach to Over-constrained Distributed Constraint Satisfaction Problems:
Distributed Hierarchical Constraint Satisfaction

Katsutoshi Hirayama
Kobe University of Mercantile Marine

5-1-1 Fukae-minami-machi, Higashinada-ku, Kobe 658-0022, JAPAN
hirayama@ti.kshosen.ac.jp

Makoto Yokoo
NTT Communication Science Laboratories

2-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237, JAPAN
yokoo@cslab.kecl.ntt.co.jp

Abstract

Many problems in multi-agent systems can be described
as a distributed CSP. However, some real-life problem can
be over-constrained and without a set of consistent vari-
able values when described as a distributed CSP. We have
presented a distributed partial CSP for handling such an
over-constrained situation and a distributed maximal CSP
as a subclass of distributed partial CSP. In this paper, we
first show another subclass of distributed partial CSP, a dis-
tributed hierarchical CSP. Next, we present a series of new
algorithms for solving a distributed hierarchical CSP, each
of which is designed based on our previous distributed con-
straint satisfaction algorithms. Finally, we evaluate the per-
formance of the new algorithms on distributed 3-coloring
problems in terms of optimality and anytime characteristics.
The results show that our new algorithms perform much bet-
ter than the previous algorithm for finding an optimal solu-
tion and produce good results for anytime characteristics.

1. Introduction

In multi-agent systems (MAS), we sometimes face a
problem where multiple agents have to find a consistent
combination of actions under some constraints about tak-
ing their actions. Such a problem includes the distributed
interpretation problem [6], the distributed resource alloca-
tion problem [2], the distributed scheduling problem [9]
and the problem in multi-agent truth maintenance tasks [5].
These problems are naturally described as adistributed con-
straint satisfaction problem(distributed CSP) [12, 13]. A

distributed CSP is a constraint satisfaction problem where
variables and constraints are distributed among multiple
agents. A solution to a distributed CSP is a set of values
to the distributed variables that satisfies all the distributed
constraints.

Previous algorithms for finding a solution to a distributed
CSP can provide a solution if one exists, but none of them
succeeds to provide useful information if no solution exists.
For example, a complete algorithm like theasynchronous
backtracking algorithm[12, 13] just reports the fact that
there is no solution, and an incomplete algorithm like the
distributed breakout algorithm[14] never terminates. How-
ever, in many application problems, we would rather want
to have a partial solution which achieves some partiality
criterion (e.g., a partial solution that satisfies as many con-
straints as possible).

We have presented adistributed partial CSPas a general
model for handling an over-constrained distributed CSP [4].
Intuitively, in a distributed partial CSP, agents search for
a solvable distributed CSP and its solution by relaxing an
over-constrained distributed CSP. By determining the way
of relaxing a distributed CSP, we can introduce various par-
tial solutions to a distributed CSP.

A distributed maximal CSP[4] can be seen as a subclass
of a distributed partial CSP. In a distributed maximal CSP,
agents search for variable values that minimize the maximal
number of violated constraints over agents. As discussed in
[4], a distributed maximal CSP has promising application
problems in MAS. However, not all problems are necessar-
ily suitable for the distributed maximal CSP.

Thus, we are going to introduce another approach, adis-
tributed hierarchical CSP. A distributed hierarchical CSP
is the problem where agents try to find variable values that



minimize the maximum importance value of violated con-
straints over agents. We believe such a partial solution is
important because there are problems in MAS where each
agent wants to get a (partial) solution that doesn’t violate its
important constraints (for example, calendar time-tabling in
which multiple agents are concerned).

In this paper, we first show the definition of a distributed
hierarchical CSP and then present a series of new algo-
rithms for solving a distributed hierarchical CSP. These al-
gorithms are developed based on our previous distributed
constraint satisfaction algorithms. Finally, we evaluate
the performance of the new algorithms on distributed 3-
coloring problems in terms of optimality and anytime char-
acteristics.

This paper is organized as follows. We first provide the
definition of a distributed CSP in section 2, and the defi-
nition of a distributed partial CSP in section 3. Next, in
section 4, we introduce a distributed hierarchical CSP as an-
other subclass of distributed partial CSP. In sections 5 and
6, we present new algorithms for solving a distributed hi-
erarchical CSP and evaluate the performance of these algo-
rithms. Finally, we conclude our discussion in section 7.

2. Distributed CSP

A CSP consists of a set ofvariablesand a set ofcon-
straintsamong variables. A variable has a finite and discrete
domain, that is, a set of possiblevaluesfor the variable. A
constraint can be described as a set of values for some vari-
ables that is prohibited for the variables (callednogood). A
solution to a CSP is a set of values for all variables violating
no constraints. The goal of a CSP is to find a solution.

A distributed CSP is a CSP where variables and con-
straints are distributed among multiple agents. The problem
consists of:

• a set of agents,A = {1, 2, . . . , l}
• a set of CSPs,P = {P1, P2, . . . , Pl}, such thatPi be-

longs to an agenti.

We usually assume that every agent’s CSP includesinter-
agent constraints, which are defined over variables both in
the agent itself and in some other agents. A solution to a
distributed CSP is a set of solutions to all agents’ CSPs.
The goal of a distributed CSP is also to find a solution.

It is important that we do not confuse a distributed CSP
with a method for solving a CSP in a distributed/parallel
manner. If we want to solve a CSP in a distributed/parallel
manner, we can choose any distribution of problems. On the
other hand, since a distributed CSP is a problem for han-
dling a MAS application problem, where multiple agents
exist and have requirements for solving their local prob-
lems, the distribution of local problems is given in advance.

3. Distributed Partial CSP

We have presented a distributed partial CSP as a general
model for handling an over-constrained distributed CSP [4].
In a distributed partial CSP, agents try to search for a solv-
able distributed CSP and its solution by relaxing an original
over-constrained distributed CSP. How much the original
problem is relaxed is measured by a globally defined func-
tion (global distance function). Agents prefer the problem
closer to the original problem, and in some case they may
want to make the relaxation minimal.

A distributed partial CSP can be formalized using terms
in a partial CSP [3]. It consists of the following compo-
nents:

• a set of agents,A = {1, 2, . . ., l}
• 〈(Pi, Ui), (PSi,≤), Mi〉 for each agenti

• (G, (N, S))

For each agenti, Pi is an original CSP (a part of an origi-
nal distributed CSP), andUi is a set ofuniverses, i.e., a set
of potential values for each variable inPi

1. Furthermore,
(PSi,≤) is called aproblem space, wherePSi is a set of
(relaxed) CSPs includingPi, and≤ is a partial order over
PSi. Also, Mi is a locally-defineddistance functionover
the problem space. TheG is aglobal distance functionover
distributed problem spaces, and(N, S) arenecessary and
sufficient boundson the global distance between the original
distributed CSP (a set ofPis of all agents) and some solv-
able distributed CSP (a set of solvable CSPs of all agents,
each of which comes fromPSi).

A solution to a distributed partial CSP is a combination
of a solvable distributed CSP and its solution, where the
global distance between an original distributed CSP and the
solvable distributed CSP is less than the necessary bound
N . Any solution to a distributed partial CSP will suffice
if the global distance between an original distributed CSP
and the solvable distributed CSP is not more than the suffi-
cient boundS. An optimal solution to a distributed partial
CSP is a solution in which the global distance between an
original distributed CSP and the solvable distributed CSP is
minimal. We call such a minimal global distance anoptimal
global distance.

4. Distributed Hierarchical CSP

We have introduced adistributed maximal CSPby spe-
cializing the components in the above model [4]. In a dis-
tributed maximal CSP, agents try to find variable values
that minimize the maximal number of violated constraints

1By introducing an universe for each variable, problem relaxation can
be expressed in terms of removing constraints (nogoods).



over agents. We believe that a distributed maximal CSP
can provide a useful partial solution to an over-constrained
distributed CSP, but in some application problems we may
want to get completely different partial solutions. Thus, we
are going to introduce another subclass of a distributed par-
tial CSP, adistributed hierarchical CSP.

In a distributed hierarchical CSP, we assume that each
constraint is labeled a positive integer calledimportance
value, which represents an importance of the constraint,
and a constraint with a larger importance value is consid-
ered more important. We believe this assumption is quite
reasonable because a constraint in the real world has some
semantics that allows us to introduce such an importance of
the constraint.

Agents in a distributed hierarchical CSP try to find vari-
able values that minimize the maximum importance value
of violated constraints over agents. We believe this type of
partial solution is useful because it would be a reasonable
compromise when each agent tries to satisfy as many (its
own) constraints with large importance values as possible.
To put it formally, solving a distributed hierarchical CSP
corresponds to finding an optimal solution to the distributed
partial CSP specialized by the following.

• For each agenti, PSi is made up of{P 0
i , P 1

i , P 2
i , . . .},

whereP α
i is a CSP that is obtained from the original

CSPPi by removing every constraint with an impor-
tance value ofα or less.

• For each agenti, a distancedi betweenPi andP α
i is

defined asα.

• A global distance is measured asmaxi∈A di.

Figure 1 shows a distributed 2-coloring problem to il-
lustrate a distributed hierarchical CSP. A node represents a
variable and an agent that has the variable. An edge rep-
resents constraints, which mean the two connected nodes
must be painted in different colors (black or white)2. An
agent knows only the constraints that are relevant to its vari-
able. For example, agent 2 knows only{a, b, e, f}. Assum-
ing the importance value of each constraint given by the
number in parentheses3, a partial CSP of agent 2, for exam-
ple, is:

• P2: a variable{2} and constraints{a, b, e, f};

• PS2: a set of the following CSPs:

– P 0
2 : P2,

2An edge actually represents two constraints (nogoods), which prohibit
(black, black) or (white, white) for those connected nodes, respectively.

3Namely, in this example, we assume that two nogoods for an edge has
the same importance value. That doesn’t mean we eliminate the possibility
of defining different importance values for these two nogoods.

1 2 3

4 5 6

a(

 

2

 

) b(

 

3

 

)

c(

 

3

 

) d(

 

1

 

)
e(

 

3

 

) f(

 

1

 

) g(

 

3

 

)

h(

 

2

 

) i(

 

3

 

)

Figure 1. Distributed 2-coloring problem

– P 1
2 : a variable{2} and constraints{a, b, e},

– P 2
2 : a variable{2} and constraints{b, e},

– P 3
2 : a variable{2} and no constraint;

• M2(P2, P
α
2 ) = α, (α = 0, 1, 2, 3).

This example doesn’t have a solution for a global dis-
tance of zero. It does, however, have a solution for a global
distance of one since a solvable distributed CSP is obtained
if agents remove the constraints d and f, which have one as
their importance values. Thus, the optimal global distance
of this example is one.

5. Algorithms

We are going to develop new algorithms for solving
a distributed hierarchical CSP by using our previous dis-
tributed constraint satisfaction algorithms. The basic idea is
very simple. We divide a search process into two parts, i.e.,
the value space searchandthe problem space search. In the
value space search, agents try to find a solution to some dis-
tributed CSP. We will use distributed constraint satisfaction
algorithms for the value space search. On the other hand,
in the problem space search, agents try to find a solvable
distributed CSP from their distributed problem spaces. We
will present some heuristic methods for the problem space
search. Our new algorithms are based on possible combi-
nations of the value space search and the problem space
search.

5.1. Distributed Constraint Satisfaction Algorithm

A simple way of realizing the value space search is to use
one of our previous distributed constraint satisfaction algo-
rithms, such as theasynchronous backtracking algorithm
[12, 13], theasynchronous weak-commitment search algo-
rithm [11, 13] or thedistributed breakout algorithm[14].

5.1.1 Asynchronous Backtracking Algorithm

The asynchronous backtracking algorithm (ABT) is basi-
cally designed for a distributed CSP where each agent has



one variable. In this algorithm, a priority value is defined for
each agent, and each agent changes its variable value asyn-
chronously and concurrently while sending its local infor-
mation viaok? messages andnogoodmessages. An agent
sendsok? messages to announce its current variable value
to other agents. When receiving anok? message, an agent
tries to find a value to its variable that is consistent with
higher priority agents. If such a consistent value is found,
the agent changes its variable value and sends the new value
to neighbors(a set of agents who share constraints) viaok?
messages. If such a consistent value is not found, the agent
creates anogood(a set of variable values of higher priority
agents) and sends the nogood to the relevant agent via ano-
goodmessage. A nogood is a new constraint under which
some agent cannot find a consistent variable value. When
receiving anogoodmessage, an agent records the received
nogood as a new constraint and tries to satisfy it hereafter.
By recording all nogoods, ABT is guaranteed to be com-
plete, i.e., it finds a solution if one exists or terminates if
none exists.

One drawback of ABT is that a high priority agent tends
to have a strong commitment to its variable value. There-
fore, if a high priority agent selects a wrong value to its
variable, lower priority agents have to perform exhaustive
search to revise that wrong value.

5.1.2 Asynchronous Weak-commitment Search Algo-
rithm

The asynchronous weak-commitment search algorithm
(AWC) is an enhancement of ABT, where agents change
their priority values dynamically so that high priority agents
do not have strong commitments to wrong variable values.
In AWC, an agent usesok? andnogoodmessages and fol-
lows a similar procedure to that of ABT when receiving
those messages. A major difference is that when receiv-
ing anok? message, if an agent cannot find a value to its
variable that is consistent with variable values of higher pri-
ority agents, the agent not only creates and sends a nogood,
but also increases its priority value to make it maximum
among neighbors. By increasing a priority value in this
way, a wrong variable value of a high priority agent can
be revised without performing exhaustive search by lower
priority agents.

AWC is efficient and guaranteed to be complete by
recording all nogoods. However, it suffers from anogood
explosion, i.e., the number of nogoods grows rapidly and
thus its checking cost can be very expensive. ABT clearly
has the same drawback as well, but such an explosion can
be more serious in AWC because an agent in AWC may cre-
ate nogoods for all neighbors; an agent in ABT, on the other
hand, only creates nogoods for higher priority agents.

ABT and AWC cannot detect the fact that every agent

reaches the state where all constraints are satisfied. We thus
need to incorporate some procedure for its detection into
these algorithms. For that purpose, a simple snapshot algo-
rithm like that in [1] should be invoked at certain intervals.

5.1.3 Distributed Breakout Algorithm

The distributed breakout algorithm (DB) is a concurrent
hill-climbing algorithm incorporated with thebreakout
method[8] for solving a distributed CSP where each agent
has one variable. In DB, a weight is defined for each con-
straint, and for each value to a variable its evaluation is
measured as the summation of the weights of violated con-
straints. An agent in DB usesok? andimprovemessages.
An ok?message is used to send a current variable value, and
an improvemessage is used to send possible improvement
in the evaluation of variable value. When receivingok?
messages from all neighbors, an agent calculates the evalu-
ation of the current variable value and its possible maximal
improvement and sends them to neighbors viaimprovemes-
sages. When receivingimprovemessages from all neigh-
bors, an agent compares each of their possible maximal im-
provements with its own one. If one of their improvements
is greater than its own one, the agent will skip taking an
action and stay unchanged. If its own improvement is the
greatest among them, the agent will take an action: chang-
ing its variable value if that can reduce its current evaluation
or increasing weights of violated constraints if any change
of variable value cannot reduce its current evaluation. Note
that ties in improvement comparison are broken determin-
istically by comparing agent identifiers.

According to our experimental evaluation, DB is very ef-
ficient especially for critically hard instances with solutions
[14]. However, it is not a complete algorithm, that is, it may
fail to find a solution even if one exists, and it never finds
the fact that there is no solution.

5.2. Distributed Hierarchical Constraint Satisfac-
tion Algorithm

In a distributed hierarchical CSP, every agent’s problem
space has a total order in terms of the degree of relaxation.
In this paper, we are going to utilize the total order on a
problem space and present two heuristic methods for the
problem space search. Both are very simple. One is the
method where an agent tries CSPs in its problem space from
the most restricted one to the most relaxed one (the remov-
ing scheme), and the other is the method where an agent
tries vice versa (the adding scheme).

With those techniques for the value space search and the
problem space search, we will combine those techniques as
follows:

• ABT from restricted to relaxed (ABT/rm)



• ABT from relaxed to restricted (ABT/ad)

• AWC from restricted to relaxed (AWC/rm)

• AWC from relaxed to restricted (AWC/ad)

• DB from relaxed to restricted (DB/ad)

Before going into the details of these algorithms, we first
define adistributed CSP at levelα as a distributed CSP that
consists of CSPs with distanceα. Such a problem can be
obtained by making each agent choose a CSP with a dis-
tanceα (a CSP with every constraint with an importance
value ofα or less removed) from its problem space.

5.2.1 ABT/rm

ABT/rm is the same as theconstraint-relaxation methodin
[10]. As with this method, ABT/rm applies ABT to each
level of a distributed CSP in the order from the level zero, an
original distributed CSP, to the maximal level. More specif-
ically, ABT/rm repeats the following: from levelα = 0 to
the maximal level, a) run ABT for a distributed CSP at level
α; b.1) if there is no solution to the problem, move to level
α + 1 (i.e., relaxing the problem); or b.2) if there is a solu-
tion, report the current distributed CSP and its consistent set
of variable values as an optimal solution to the distributed
hierarchical CSP, and then terminate.

Since ABT/rm relaxes a problem by removing con-
straints, some nogoods created at the previous levels may
become obsolete. To remove such an obsolete nogood, we
must keep constraints that originate a created nogood and
remove the nogood if one of the constraints is removed at
the problem relaxation.

5.2.2 ABT/ad

While ABT/rm searches a problem space from restricted
one to relaxed one, ABT/ad takes the opposite strategy. It
repeats: from levelα = the maximal level to zero, a) run
ABT for a distributed CSP at levelα; b.1) if there is a solu-
tion, record it and move to levelα − 1 (i.e., restricting the
problem); or b.2) if there is no solution, report the solution
of the previous level as an optimal solution to the distributed
hierarchical CSP, and then terminate.

Since ABT/ad gradually restricts a problem by adding
constraints, nogoods created at the previous levels are all
valid throughout the algorithm execution. Thus, we do not
need to attach originating constraints to each nogood.

5.2.3 AWC/rm and AWC/ad

AWC/rm and ABT/rm are essentially the same. A dif-
ference is that we use AWC instead of ABT in AWC/rm.
The same is true for the relationship between ABT/ad and
AWC/ad.

5.2.4 DB/ad

DB/ad repeatedly applies DB from the maximal level to
zero. However, unlike the other algorithms, DB/ad is not
complete, that is, it may fail to find an optimal solution to a
distributed hierarchical CSP because DB may fail to find a
solution to a distributed CSP at a certain level.

Note that DB/rm, DB from restricted to relaxed, is not
feasible because DB is unable to identify an insoluble dis-
tributed CSP that could be used as a chance to relax the
problem.

6. Evaluation

We evaluated the performance of these algorithms
through experiments on distributed 3-coloring problems. In
these experiments, a distributed 3-coloring problem was ob-
tained by generating a 3-coloring problem withm edges
(3m constraints/nogoods) andn nodes (n variables) and
distributing them so that each agent has one node and the
edges that are connected to the node.

The algorithms were implemented on a simulator ofsyn-
chronous distributed system, a typical model of distributed
system, on which every agent synchronously performs the
following cycle.

1. Receive all the messages which were sent toward the
agent at the previous cycle.

2. Perform local computation to change its internal state
and determine the contents of messages, and send
those messages to other agents.

Note that at first cycle an agent does not receive any mes-
sages, but it does perform local computation and send mes-
sages to other agents. Using this simulator, we evaluated
the performance of algorithms in terms of cycles.

6.1. Experiment on Small-sized Instances

We first made an experiment on small-sized instances
to measure cycles that complete algorithms (ABT/rm,
ABT/ad, AWC/rm, AWC/ad) consume until they find an
optimal solution. We used four classes of distributed 3-
coloring problems: problems with 348 edges and 30 nodes,
174 edges and 30 nodes, 87 edges and 30 nodes, and 65
edges and 30 nodes, and randomly generated 10 instances
for each class. We chose these classes based on the result
of our preliminary experiment to locate an optimal global
distance.

In generating an instance, we first built a spanning tree
and randomly added edges to the tree to ensure graph con-
nectivity, and a random integer with a uniform distribution
of 1 to 10 was assigned to each edge as its importance



algorithm 348 edges 30 nodes174 edges 30 nodes87 edges 30 nodes 65 edges 30 nodes
% cycle % cycle % cycle % cycle

ABT/rm 0 − 0 − 0 − 0 −
ABT/ad 0 − 0 − 0 − 0 −
AWC/rm 100 1646.7 100 2409.0 100 2316.0 100 841.5
AWC/ad 100 462.8 100 528.6 100 1207.1 100 717.2

Table 1. Average cycle to find an optimal solution.

value4. By this method, an optimal global distance lies on
8–9 for problems with 348 edges and 30 nodes, 6–8 for
problems with 174 edges and 30 nodes, 2–5 for problems
with 87 edges and 30 nodes, and 0–2 for problems with 65
edges and 30 nodes. For each instance, a complete algo-
rithm made 10 trials with randomly generated different sets
of initial variable values. We set the bound for cycles at
10000 and terminated a trial if an algorithm fails to find an
optimal solution within the bound. Such a trial is counted
as 10000 cycles.

Table 1 shows for 100 trials (10 instances with 10 trials)
of each class of problems, the cycles consumed until each
algorithm finds an optimal solution (averaged over 100 tri-
als) and the percentage of times each algorithm completed
within the bound. These results indicate:

• ABT/rm (the constraint-relaxation method in [10]) and
ABT/ad perform very poorly for all instances. This is
due to inefficiency of ABT as the value space search.

• AWC/rm is more expensive than AWC/ad. This is be-
cause AWC generally works poorly in detecting an in-
soluble problem due to its poor ability in nogood han-
dling. AWC/rm continues to deal with such insoluble
problems until it finds an optimal solution, and thus its
performance deteriorates.

• For problems with 65 edges and 30 nodes, the differ-
ence between AWC/rm and AWC/ad is not so large
in terms of average cycles. This is because for some
instance with a low optimal global distance, AWC/rm
can be better because it starts from the original dis-
tributed CSP toward the relaxed ones and thus finding
an optimal solution with such a low optimal global dis-
tance very easily.

Figure 2 shows typicalanytime curvesfor AWC/ad for
an instance of problems with 65 edges and 30 nodes. An
anytime curve illustrates how a global distance of the best
solution found so far is improved as time proceeds. A curve
in figure 2 is averaged over 10 trials. Note that the removing

4Three constraints/nogoods corresponding to one edge have the same
importance value in this experiment.

0

2

4

6

8

10

12

0 500 1000 1500 2000 2500 3000

AWC/ad

gl
ob

al
 d

is
ta

nc
e

Cycle

Figure 2. Anytime curve for an instance of
problems with 65 edges and 30 nodes (aver-
aged over 10 trials).

scheme algorithm, such as ABT/rm or AWC/rm, cannot ob-
tain any solution until it finds an optimal solution because
it starts from a tight and usually insoluble distributed CSP.
However, the adding scheme algorithm proceeds while get-
ting a series of non-optimal solutions and thus being able
to produce a nearly-optimal solution while searching for an
optimal solution.

6.2. Experiment on Large-sized Instances

For large-sized instances, the performance of the above
algorithms becomes very poor since each of these searches
for an optimal solution. It seems reasonable to assume that
we should aim at a nearly optimal solution in place of an
optimal solution. Accordingly, the anytime characteristics
may be important. As we showed in the experiment on
small-sized instances, the removing scheme is not appropri-
ate in terms of the anytime characteristics, and thus we used
only the promising adding scheme, AWC/ad and DB/ad, to
compare their performance.

In this experiment, we didn’t use nogood recording in
AWC/ad. Generally speaking, nogood recording can be
computationally expensive especially for large-sized in-
stances. Fortunately, without nogood recording, AWC has



algorithm 180 + 243 edges 243 + 243 edges 240 + 324 edges 324 + 324 edges
90 nodes 90 nodes 120 nodes 120 nodes

% cycle % cycle % cycle % cycle
AWC/ad 100 121.5 100 2337.8 100 176.7 93 14299.5
DB/ad 100 235.6 99 3608.8 100 299.5 99 2670.3

Table 2. Average cycle to find a solution to the problem at the level 6.

the way to break deadends, i.e., changing priorities among
agents, and is able to find a solution to a solvable dis-
tributed CSP in many cases. This means that, without no-
good recording, AWC/ad is feasible even if it loses its com-
pleteness.

We made an experiment on distributed 3-coloring prob-
lems withm = 2n + 2.7n andm = 2.7n + 2.7n (m: the
number of edges,n: the number of nodes). The former
includes difficult instances for DB, and the latter does for
AWC [14]. The values ofn are 90 and 120 in this experi-
ment. An instance was generated such that, for eachn,

1. create2n or 2.7n edges by the method described in [7]
(that produces a solvable and connected graph), each
of which is labeled by a random integer with a uniform
distribution of 6 to 10.

2. add2.7n edges randomly, each of which is labeled by
a random integer with a uniform distribution of 1 to 5.

This method ensures that every distributed CSP at more
than the 5 level has consistent variable values, and thus an
optimal distance is located at not more than the 5 level. It
also ensures that there is a hard solvable distributed CSP
between the levels 6 and 10. Thus, the adding scheme def-
initely confronts some hard instance on the way from the
maximal level to the optimal level. We evaluated the perfor-
mance of algorithms by how quickly they go through those
hard and solvable levels.

Table 2 shows the cycles consumed until each algorithm
finds a solution to a distributed CSP at the level 6 after start-
ing with the one at the level 10 (averaged over 100 trials (10
instances with 10 trials)). Each trial started with randomly
chosen initial variable values and was terminated if it fails
to find a solution to the problem at the level 6 within 50000
cycles. This table also shows the percentage of times the
algorithm was successfully completed. From these results,
we can see the following:

• DB/ad is effective for problems with324 + 324 edges
and 120 nodes while AWC/ad is effective for other
problems. We suppose that this is due to the proper-
ties of AWC and DB. DB is more efficient than AWC
for solvable instances ofm = 2.7n (especially when
n is large); on the other hand, AWC is more efficient

than DB for those ofm = 2n. Thus, DB/ad can
move more quickly among these levels of distributed
CSPs (the level 10 to 6) while it efficiently finds a so-
lution at a certain level of problem for324+324 edges
and 120 nodes; on the other hand, AWC/ad can do for
180 + 243 edges and 90 nodes and240 + 324 edges
and 120 nodes.

• In spite of no guarantee of finding a solution to the
problem at the level 6, most instances are success-
fully completed by AWC/ad and DB/ad. On the other
hand, ABT/ad (not in table 2) does have such guar-
antee, but more cycles are consumed than AWC/ad or
DB/ad. Furthermore, both ABT/ad and AWC/ad com-
bined with nogood recording are computationally ex-
pensive because they need to check all recorded no-
goods.

7. Conclusion

We showed a distributed hierarchical CSP to give an-
other partial solution to an over-constrained distributed CSP
and presented a series of new algorithms for solving a dis-
tributed hierarchical CSP.

We believe this class of problem would be important
since a real-life problem in MAS may be easily over-
constrained when each of multiple users delegates an agent
to satisfy his/her constraints. A partial solution provided by
a distributed hierarchical CSP is one promising solution for
the situation.

Algorithms presented in this paper are combinations of
our previous distributed constraint satisfaction algorithms
and the simple problem space search methods. One may
feel that these algorithms are so straightforward that they
would need more sophisticated techniques especially for the
problem space search. However, we believe the problem
space search should be simple because the search cost in a
problem space is very high.

Finally, we point out the current limitation of our algo-
rithms. All the algorithms in this paper are for an over-
constrained distributed CSP where each agent has one vari-
able because we use distributed constraint satisfaction al-
gorithms designed for such a problem as the value space
search. However, by using the algorithm presented in [15]



as the value space search, we can easily extend our algo-
rithms to the problem where each agent has multiple local
variables. Our future work will include evaluating the per-
formance of those extended algorithms.

References

[1] K. Chandy and L. Lamport. Distributed snapshots: Deter-
mining global states of distributed systems.ACM Transac-
tion on Computer Systems, 3(1):63–75, 1985.

[2] S. E. Conry, K. Kuwabara, V. R. Lesser, and R. A. Meyer.
Multistage negotiation for distributed constraint satisfac-
tion. IEEE Transactions on Systems, Man and Cybernetics,
21(6):1462–1477, 1991.

[3] E. C. Freuder and R. J. Wallace. Partial constraint satisfac-
tion. Artificial Intelligence, 58(1–3):21–70, 1992.

[4] K. Hirayama and M. Yokoo. Distributed partial constraint
satisfaction problem. In G. Smolka, editor,Principles and
Practice of Constraint Programming –CP97, volume 1330
of Lecture Notes in Computer Science, pages 222–236.
Springer-Verlag, 1997.

[5] M. N. Huhns and D. M. Bridgeland. Multiagent truth main-
tenance.IEEE Transactions on Systems, Man and Cybernet-
ics, 21(6):1437–1445, 1991.

[6] V. R. Lesser and D. D. Corkill. The distributed vehicle mon-
itoring testbed: A tool for investigating distributed problem
solving networks.AI Magazine, 4(3):15–33, 1983.

[7] S. Minton, M. D. Johnston, A. B. Philips, and P. Laird. Min-
imizing conflicts: a heuristic repair method for constraint
satisfaction and scheduling problems.Artificial Intelligence,
58(1–3):161–205, 1992.

[8] P. Morris. The breakout method for escaping from local min-
ima. InProceedings of the Eleventh National Conference on
Artificial Intelligence, pages 40–45, 1993.

[9] K. P. Sycara, S. Roth, N. Sadeh, and M. Fox. Distributed
constrained heuristic search.IEEE Transactions on Systems,
Man and Cybernetics, 21(6):1446–1461, 1991.

[10] M. Yokoo. Constraint relaxation in distributed constraint
satisfaction problem. In5th International Conference on
Tools with Artificial Intelligence, pages 56–63, 1993.

[11] M. Yokoo. Asynchronous weak-commitment search for
solving distributed constraint satisfaction problems. InPrin-
ciples and Practice of Constraint Programming –CP95, vol-
ume 976 ofLecture Notes in Computer Science, pages 88–
102. Springer-Verlag, 1995.

[12] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. Dis-
tributed constraint satisfaction for formalizing distributed
problem solving. InProceedings of the 12th IEEE Interna-
tional Conference on Distributed Computing Systems, pages
614–621, 1992.

[13] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. The
distributed constraint satisfaction problem: formalization
and algorithms.IEEE Transactions on Knowledge and Data
Engineering, 10(5):673–685, 1998.

[14] M. Yokoo and K. Hirayama. Distributed breakout algo-
rithm for solving distributed constraint satisfaction prob-
lems. InProceedings of the Second International Confer-
ence on Multi-Agent Systems, pages 401–408, 1996.

[15] M. Yokoo and K. Hirayama. Distributed constraint satisfac-
tion algorithm for complex local problems. InProceedings
of the Third International Conference on Multi-Agent Sys-
tems, pages 372–379, 1998.


