Introducing Communication in Dis-POMDPs with Locality of Interaction

Makoto Tasaki, Yuichi Yabu, Yuki Iwanari, Makoto Yokoo
Kyushu University
Fukuoka, 819-0395 Japan
{tasaki@agent., yabu@agent., iwanari@agent., yokoo@}
is.kyushu-u.ac.jp

Milind Tambe, Janusz Marecki
University of Southern California
Los Angeles, CA 90089
{marecki, tambe}@usc.edu

Pradeep Varakantham
Carnegie Mellon University
Pittsburgh, PA 15213
pradeepv@cs.cmu.edu

Abstract

The Networked Distributed POMDPs (ND-POMDPs) can model multiagent systems in uncertain domains and has begun to scale-up the number of agents. However, prior work in ND-POMDPs has failed to address communication. Without communication, the size of a local policy at each agent within the ND-POMDPs grows exponentially in the time horizon. To overcome this problem, we extend existing algorithms so that agents periodically communicate their observation and action histories with each other. After communication, agents can start from new synchronized belief state. Thus, we can avoid the exponential growth in the size of local policies.

1. Introduction

Distributed Partially Observable Markov Decision Problems (Dis-POMDPs) are emerging as a popular approach for modeling sequential decision making in teams operating under uncertainty [1, 8, 3]. The uncertainty is due to the nondeterminism in the outcomes of actions and the limited observability of the world state. Unfortunately, as shown by Bernstein et al. [1], the problem of finding an optimal joint policy for a distributed POMDP is NEXP-Complete if no assumptions are made about the domain conditions.

To address this significant computational complexity, Networked Distributed POMDPs (ND-POMDPs) [4], a model motivated by domains such as distributed sensor nets, distributed UAV teams, and distributed satellites, was introduced. These domains are characterized by teams of agents coordinating with strong locality in their interactions. For example, within a large distributed sensor net, only a small subset of sensor agents must coordinate to track targets. By exploiting the locality, LID-JESP [4] (locally optimal) and SPIDER [9] (globally optimal), which are leading algorithms in this area, can scale-up in the number of agents. However, these approaches cannot handle run-time communication among agents. A consequence of this shortcoming is the exponential growth in the size of local policies.

To overcome this problem, we provide extensions to these algorithms called LID-JESP-Comm and SPIDER-Comm by introducing the run-time communication scheme presented in [3]. More specifically, agents periodically exchange observation and action histories with each other. Compared to other approaches such as [2, 6, 7], the advantage of using this scheme is that it allows the agents to build a new joint policy from a new synchronized belief state, i.e., instead of having one huge policy tree, an agent has multiple smaller policy trees.

Though this approach reduces the size of policies, it creates an exponential number of synchronized belief states after communication. To overcome this problem, we introduce an idea that resembles the Point-based Value Iteration (PBVI) algorithm [5] for single agent POMDPs. Instead of computing optimal policies for all the synchronized belief states, we compute optimal policies (and corresponding value vectors) only for a set of representative belief points. Thus, we approximate the value function over the entire belief set by these value vectors, i.e., for any given belief point, we use the policy corresponding to the value vector that yields the highest value.

We develop two new algorithms based on this idea, i.e., LID-JESP-Comm and SPIDER-Comm (extensions to LID-JESP and SPIDER respectively). Since communication introduces inter-dependencies among agent policies, these algorithms lose some of the merits of the original algo-
rithms. In LID-JESP-Comm, to update the policy of an agent, we need to consider the policies of all the other agents. SPIDER-Comm cannot provide global optimality, because it requires the enumeration of all joint policies. Despite these disadvantages, our experimental results show that these algorithms can obtain much longer policies than existing algorithms within a reasonable amount of time.

2 Model: Networked Distributed POMDP

We follow the networked distributed POMDP (ND-POMDP) model [4] as a concrete description of a Distributed POMDP. It is defined for a group of n agents as tuple $(S, A, P, \Omega, O, R, b)$, where $S = \times_{1 \leq i \leq n} S_i \times S_u$ is the set of world states. S_i refers to the set of local states of agent i and S_u is the set of un-affectable states. Un-affectable state refers to that part of the world state that cannot be affected by agent actions. $A = \times_{1 \leq i \leq n} A_i$ is the set of joint actions, where A_i is the set of actions for agent i.

ND-POMDP assumes transition independence, i.e., the transition function is defined as $P(s, a, s') = P_a(s_u, s'_u) \cdot \prod_{1 \leq i \leq n} P_i(s, s'_i, a_i, s'_i')$, where $a = \langle a_1, \ldots, a_n \rangle$ is the joint action performed in state $s = \langle s_1, \ldots, s_n, s_u \rangle$ and $s' = \langle s'_1, \ldots, s'_n, s'_u \rangle$ is the resulting state. $\Omega = \times_{1 \leq i \leq n} \Omega_i$ is the set of joint observations where Ω_i is the set of observations for agent i. Observational independence is assumed in ND-POMDPs i.e., the joint observation function is defined as $O(s', a, \omega) = \prod_{1 \leq i \leq n} O_i(s'_i, s'_u, a_i, \omega_i)$, where s' is the world state that results from the agents performing a in the previous state, and ω is the observation received in state s'. Reward function R is defined as $R(s, a) = \sum R_l(s_1, \ldots, s_r, s_u, \langle a_1, \ldots, a_r \rangle)$, where each l could refer to any subgroup of agents and $r = |l|$. Based on the reward function, an interaction hypergraph is constructed. Hyper-link \mathcal{E} exists between a subset of agents for all R_l that comprise R. The interaction hypergraph is defined as $G = (Ag, \mathcal{E})$, where agents Ag are the vertices and $\mathcal{E} = \{|l| \subseteq Ag \land R_l$ is a component of $R\}$ are the edges. The distribution over the initial state b is defined as $b(s) = b_u(s_u) \cdot \prod_{1 \leq i \leq n} b_i(s_i)$, where b_u and b_i refer to distribution over the initial un-affectable and agent i’s belief states, respectively. Each agent i chooses its actions based on its local policy π_i that maps its observation history to an action. The goal in ND-POMDP is to compute joint policy $\pi = \langle \pi_1, \ldots, \pi_n \rangle$ that maximizes the team’s expected reward over finite horizon T starting from belief state b.

Distributed sensor networks are a large, important class of domains that motivate our work. This paper focuses on a set of target tracking problems that arise in certain types of sensor networks [4]. Figure 1 shows a specific problem instance within this type that consists of three sensors. Here, each sensor node can scan in one of four directions: North, South, East or West (see Figure 1). To track a target and obtain associated reward, two sensors with overlapping scanning areas must be coordinated by simultaneously scanning the same area. In Figure 1, to track a target in Loc 1, sensor 1 needs to scan ‘East’ and sensor 2 needs to scan ‘West’ simultaneously. We assume two independent targets and that each target’s movement is uncertain and unaffected by the sensor agents. Based on the area it is scanning, each sensor receives observations that can have false positives and false negatives. Sensors’ observations and transitions are independent of each other’s actions. Each agent incurs a scanning cost whether the target is present or not, but no cost if it is turned off. There is a high reward for successfully tracking a target.

3 Existing Algorithms

3.1 LID-JESP

The locally optimal policy generation algorithm called LID-JESP (Locally interacting distributed joint search for policies) is based on DBA [10] and JESP [3]. In this algorithm, each agent tries to improve its policy with respect to its neighbors’ policies in a distributed manner similar to DBA.

Initially each agent i starts with a random policy and exchanges its policies with its neighbors. It then computes its local neighborhood utility with respect to its current policy and its neighbors’ policies. The local neighborhood utility of agent i is defined as the expected reward for executing joint policy π accruing due to the hyper-links that contain agent i. Agent i then tries to improve upon its current policy by computing the local neighborhood utility of agent i’s best response to its neighbors’ policies. Agent i then computes the gain that it can make to its local neighborhood utility, and exchanges its gain with its neighbors. If i’s gain is greater than any of its neighbors’ gain, i changes its policy and sends its new policy to all its neighbors. This process of trying to improve the local neighborhood utility is continued until the joint policies reach an equilibrium.

3.2 SPIDER

The key idea in SPIDER [9] is avoiding the computation of expected values for the entire space of joint policies by utilizing the upper bounds on the expected values of policies and the interaction structure of agents. SPIDER has a pre-processing step that constructs a Depth First Search tree.
(DFS tree) that allow links between ancestors and children. SPIDER places agents with more constraints at the top of the tree. This tree governs how the search for the optimal joint policy proceeds in SPIDER.

In Figure 2, we show a snapshot of search trees in the SPIDER algorithm. A rectangle indicates an agent, and a tree within a rectangle indicates an agent’s policy. In this example, each agent has a policy with $T = 2$. Each rounded rectangle (search tree node) indicates a partial/complete joint policy. The heuristic or actual expected value for a joint policy is indicated in the top right corner of the rounded rectangle. If the number is underlined, the actual expected value of the joint policy is provided. SPIDER begins with no policy assigned to any of the agents (shown in level 1 of the search tree). Level 2 of the search tree indicates that the joint policies are sorted based on upper bounds computed for the root agent’s policies. Level 3 shows one SPIDER search node with a complete joint policy (a policy assigned to each agent). The expected value for this joint policy is used to prune the nodes in level 2 (those with upper bounds < 240). When creating policies for each non-leaf agent i, SPIDER potentially performs two steps:

STEP 1 Obtaining upper bounds and sorting In this step, agent i computes the upper bounds on the expected values of the joint policies corresponding to each of its policies and the fixed ancestor policies. An MDP-based heuristic (more details will be explained later) computes these upper bounds on the expected values. All the policies of agent i are then sorted based on these upper bounds in descending order.

STEP 2 Exploring and pruning Exploring implies computing the best response joint policy that corresponds to the fixed ancestor policies of agent i. This is performed by iterating through all policies of agent i and summing two quantities for each policy: (i) the best response for all of i’s children; (ii) the expected value obtained by i for fixed policies of ancestors. Pruning refers to avoiding the exploration of all policies at agent i using the current best expected value as threshold. A policy need not be explored if its upper bound is less than the threshold. For example, if the best response policies from the leaf agents yield an actual expected value of 240, a policy with upper-bound 232 is pruned (see Figure 2).

4 Communication in ND-POMDP

We introduce the run-time communication scheme presented in [3] to ND-POMDPs as follows.

- In the initial state, agents have a synchronized belief state. Each agent has a local plan for subsequent k steps\(^1\).
- Each agent executes its local plan for k steps. Then, agents go through the communication phase.
- During the communication phase, agents communicate their observation/action histories with each other. By exchanging the observation and action histories with each other, they have common knowledge on the observation/action histories of all agents. Thus, they can update their beliefs and reach a new synchronized belief state.
- Each agent chooses a new plan prepared for that new synchronized belief state.

Thus, we use multiple small policy trees with a constant depth k instead of one huge policy tree whose size is exponential to the length of the time horizon.

However, the number of joint (small) policies grows exponentially to the length of the time horizon. To overcome this problem, we introduce an idea that resembles the Point-based Value Iteration (PBVI) algorithm [5] for single agent POMDPs. More specifically, we use a fixed number of representative belief points and compute the k-step optimal joint policy for each representative belief point. By using a fixed number of representative belief points, the obtained policy can be suboptimal. However, as shown in [5], we can bound the the difference between the obtained approximated policy and the optimal policy.

Let us assume we fix one particular k-step joint policy π. The expected reward of π starting from one particular belief state b is represented as a weighted linear combination of the expected reward for each state (Figure 3). More

\(^1\)For simplicity, we assume one communication phase occurs exactly once after k non-communication steps. Extending the algorithms to the cases where one communication phase occurs at least once within k steps is rather straightforward.
specifically, assume that possible states are \{s_1, s_2, \ldots\} and a belief state \(b = \langle b(s_1), b(s_2), \ldots \rangle \). The expected reward for joint policy \(\pi \) starting from \(b \), denoted as \(ER(b, \pi) \), can be represented as:

\[
b(s_1) \ast ER((1, 0, \ldots), \pi) + b(s_2) \ast ER((0, 1, 0, \ldots), \pi) + \ldots
\]

Here, we call the vector \((ER((1, 0, \ldots), \pi), ER((0, 1, 0, \ldots), \pi))\ldots\) as \(\alpha \) vector. The expected reward starting from belief state \(b \) is obtained by calculating the inner product of the belief state and the \(\alpha \) vector. Since the optimal reward of the entire belief space is obtained by taking the maximal value for all possible joint policies, it is clear that the optimal reward satisfies piece-wise linear, convex (PWLC) property.

We approximate this optimal reward for the entire belief space (value function) using these \(\alpha \) vectors of representative belief points (Figure 3).

4.1 ND-POMDP-Comm Algorithm (the mechanism)

Next, we describe the details of algorithm in ND-POMDP with communication. We employ the following notation to denote the policies and the expected values:

\[
\pi^* \Rightarrow \text{optimal joint policy of all agents.}
\]

\[
\pi^{i,*} \Rightarrow \text{joint policy computed before searching for the policy of agent } i.
\]

\[
\pi^{i+j} \Rightarrow \text{joint policy of agents searched for after } j.
\]

\[
\pi_i \Rightarrow \text{local policy of agent } i.
\]

\[
v[\tilde{\alpha}, b] \Rightarrow \text{the expected value for } \tilde{\alpha} \text{ given belief state } b.
\]

\[
\hat{v}[\pi^{i,*} | \pi_j] \Rightarrow \text{upper bound on the expected value given } \pi^{i,*} \text{ and } \pi_j.
\]

We need to find a joint policy for each representative point after each communication phase. If there are \(|B|\) representative points and \(c\) communication phases, we need to find \(c|B|\) joint policies for belief points after communication and one joint policy for the initial belief state.

Figure 4 shows the local policy given \(k = 2 \). First, our algorithm computes the joint policy for each of the representative points after the last communication phase, i.e., the joint policy for time steps 7-8 (Figure 4). This results in three policies: \(\pi_{20}, \pi_{21}, \text{ and } \pi_{22} \). Our algorithm computes the \(\alpha \)-vectors for these joint policies.

Next, it computes a joint policy for time steps 4-6. A rectangle (represented by dashed lines) indicates the communication phase and lines from filled circles indicate the transitions to synchronized belief states after communication. The policies generated are \(\pi_{10}, \pi_{11}, \pi_{12}, \text{ and } \pi_{13} \). The algorithm computes the \(\alpha \)-vectors for these joint policies. Finally, it determines the joint policy for the initial belief state.

Algorithm 1 provides the pseudo code for ND-POMDP with communication. This algorithm outputs a joint policy \(\pi^* \). \texttt{CommPhase} represents the number of communication phases. In line 2, a set of representative belief points is generated using the method described in the next subsection. Then, a joint policy is calculated for each representative belief point \(b \in B \), and the obtained joint policy is stored in \(\pi^*[b,\texttt{CommPhase}] \) (lines 5-7). In each action phase, \texttt{FINDPOLICY} function finds a joint policy and its \(\alpha \)-vector, and utilizes two new algorithms based on LID-JESP-Comm or SPIDER-Comm.

4.2 Belief Point Selection

The way to choose representative belief points can affect the solution quality. We consider the following two methods. We assume that initial belief state \(b_{init} \) is always included in representative belief points \(B \).

Random Belief Selection (RA) In this method, we sample
Algorithm 1 ND-POMDP-Comm($k, \text{CommPhase}$)

1: initialize $\vec{\alpha}$, $\pi^* \leftarrow \text{null}$
2: $B \leftarrow \text{BeliefExpansion}(b_{init})$
3: while $\text{CommPhase} \geq 0$ do
4: for all $b \in B$ do
5: $(\pi^*[b, \text{CommPhase}], \vec{\alpha}) \leftarrow$
6: $\text{FINDPOLICY}(b, \text{root}, \text{null}, -\infty, k, \vec{\alpha}^*)$
7: $\alpha^*[\text{CommPhase}] \leftarrow \alpha^*[\text{CommPhase}][|\vec{\alpha}|$
8: $\text{CommPhase} = \text{CommPhase} - 1$
9: return π^*

belief points from uniform distribution over the entire belief space.

Stochastic Simulation with Exploratory Action (SSEA)

This method is based on the algorithm presented in [5]. We gradually expand B by adding new reachable belief points after k actions and communication. More specifically, we stochastically run k actions in the forward trajectory from the belief points already in B and obtain several candidates. From these candidates, we select belief points that improve the worst-case density, i.e., we choose the point farthest from any point already in B.

4.3 LID-JESP with Communication

LID-JESP with Communication (LID-JESP-Comm) performs the following procedure:

(i) For each representative point, we find the joint equilibrium policy (where each policy of an agent is the best response for other agents’ policies) for k steps after the last communication using LID-JESP [4].

(ii) Then, for each representative point, we find the joint equilibrium policy for k steps after the second to the last communication. For the current k steps, we need only the policies of neighbors to evaluate the expected reward. On the other hand, to evaluate the expected reward after communication, we consider the policies of non-neighbors and obtain the probability distribution of the new synchronized belief states. For each new synchronized belief state, we use the best expected reward for the joint policies obtained in (i).

(iii) Then, we find the joint equilibrium policy for k steps after the third to the last communication, and so on.

4.4 SPIDER with Communication

Next, we describe the details of SPIDER with Communication (SPIDER-Comm). SPIDER can obtain global optimal joint policies by exploiting the locality of agent interaction. However, communication phase invalidates the locality in interaction that original SPIDER was relying on. In essence, previously independent agents (on different hyperlinks) are not interdependent. More specifically, a new synchronized belief state (and the expected reward after communication) depends on all agents’ policies. In SPIDER-Comm, we utilize a greedy method i.e., when finding a best response policy for agent i in the DFS tree, we don’t enumerate the combinations of the joint policies of different subtrees, while we enumerate the combinations within a subtree. Thus, although the SPIDER-Comm cannot guarantee to find the global optimal joint policy, it can utilize the locality of interaction and obtain a reasonable policy within a reasonable amount of time.

Algorithm 2 provides a pseudo code for procedure FINDPOLICY for SPIDER-Comm, which finds a joint policy and its α-vector. First, we store all possible local policies in Π_i (line 2). If i is a leaf agent, the local policies of all agents in its subtree are already assigned. SPIDER-Comm obtains an exact value for the subtree (and ancestors) and new synchronized belief states after communication (assuming default policies are used by the agents whose policies are not assigned yet), and chooses the best one (lines 3-9). On the other hand, if i is not a leaf agent, SPIDER-Comm performs the following procedure: (a) sorts policies in descending order based on heuristic values (line 12), (b) recursively calls FINDPOLICY for the next agent and calculates the best response policies for each local policy of agent i as long as the heuristic evaluation of the policy is better than the solution found so far (line 17), (c) maintains the threshold, the best solution found so far (lines 18-21).

4.4.1 Heuristic Function

In SPIDER-Comm, we need to construct a heuristic function that estimates the expected reward for the current k steps and after communication.

In [9], the MDP heuristic function is introduced. More specifically, the subtree of agents is a Dis-POMDP in itself. Thus, we can construct a centralized MDP corresponding to the (subtree) Dis-POMDP and obtain the expected value of the optimal policy for this centralized MDP. The advantage of the MDP heuristic is that it is admissible, i.e., it never under-estimates the optimal value. Thus, the SPIDER is guaranteed to find an optimal joint policy.

However, if we assume the subtree is solved by a centralized MDP (in which the current state is fully observable), we cannot estimate the new synchronized belief state after communication. Thus, we assign default policies to agents whose policies are not assigned yet and estimate the new synchronized belief state after communication assuming these agents use the default policies. We can use these
there are four agents and three targets, and (iii) shows the
5
+35
time can be reduced. We will evaluate this trade-off in the
next section.

steps. In this case, the heuristic function is no
longer admissible, but it can prune more nodes and the run-
time can be reduced. We will evaluate this trade-off in the
next section.

Our experiments were conducted on the example of the
sensor network domain described in Section 2. We use three
different topologies of sensors shown in Figure 5. Figure 5 (i)
shows the example where there are three agents and
and two targets. Target 1 is either absent or in Loc1, and target
2 is either absent or in Loc2. Thus, there are 4 unaffordable
states. Each agent can perform turnOff, scanEast, or scan-
West. Agents receive +45 as an immediate reward for finding
target 1, +35 for finding target 2, and −5 for failing to
find any target. Figure 5 (ii) shows the example where
there are four agents and three targets, and (iii) shows the
example where there are five agents and four targets.

We have compared two alternative methods for selecting
representative points, i.e., RA or SSEA. We found that
SSEA dominates RA, especially when the number of represen-
tative points is small. Thus, we use SSEA for selecting
representative points in the following experiments.

Table 1 shows the runtime and the expected reward of
the obtained joint policy of SPIDER and SPIDER-Comm
for a sensor network with three sensors (T = 3 and k = 1).
We cannot run SPIDER for larger T, since the size/number
of local policies grow exponentially. By introducing com-

6
18:
13:
22:
21:
19:
17:
16:
15:
14:
13:
12:
11:
10:
9:
8:
7:
6:
5:
4:
3:
2:
1:

\[\text{Algorithm 2 FINDPOLICY}(b, i, \pi^*, \text{threshold}, k, \alpha^*) \]

1: \(\hat{\alpha} \leftarrow \text{null}, \hat{\pi}^* \leftarrow \text{null} \)
2: \(\Pi_i \leftarrow \text{GET-ALL-POLICIES}(k, A_i, \Omega_i) \)
3: if IS-LEAF(i) then
4: \(\quad \text{for all } \pi_i \in \Pi_i, \text{ do} \)
5: \(\quad \hat{\alpha}_i \leftarrow \text{GETVECTOR}(i, \pi_i, \pi^* \| \alpha^*) \)
6: \(\quad \text{if } v[\hat{\alpha}_i, b] > \text{threshold} \text{ then} \)
7: \(\quad \quad \hat{\pi}^* \leftarrow \pi_i \)
8: \(\quad \quad \text{threshold} \leftarrow v[\hat{\alpha}_i, b] \)
9: \(\quad \hat{\alpha} \leftarrow \hat{\alpha}_i \)
10: \(\quad \text{else} \)
11: \(\quad \text{children} \leftarrow \text{CHILDREN}(i) \)
12: \(\quad \Pi_i \leftarrow \text{UPPER-BOUND-SORT}(b, i, \Pi_i, \pi^* \| \alpha^*) \)
13: \(\quad \text{for all } \pi_i \in \Pi_i, \text{ do} \)
14: \(\quad \text{if } \hat{v}[\pi^* \| \pi_i] < \text{threshold} \text{ then} \)
15: \(\quad \quad \text{Go to line 22} \)
16: \(\quad \text{for all } j \in \text{children} \text{ do} \)
17: \(\quad \langle \pi^+_j, \hat{\alpha}_j \rangle \leftarrow \text{FINDPOLICY}(b, i, \pi^* \| \pi_j, \alpha^*) \)
18: \(\quad \text{if } v[\hat{\alpha}_j, b] > \text{threshold} \text{ then} \)
19: \(\quad \quad \hat{\pi}^* \leftarrow \pi_i \| \pi^+_j \)
20: \(\quad \quad \text{threshold} \leftarrow v[\hat{\alpha}_j, b] \)
21: \(\quad \hat{\alpha} \leftarrow \hat{\alpha}_j \)
22: \text{return } \langle \hat{\pi}^*, \hat{\alpha} \rangle

Figure 5. Sensor net configurations

default policies also for evaluating the expected reward for
the current k steps. In this case, the heuristic function is no
longer admissible, but it can prune more nodes and the run-
time can be reduced. We will evaluate this trade-off in the
next section.

5 Experimental Results

Our experiments were conducted on the example of the
sensor network domain described in Section 2. We use three
different topologies of sensors shown in Figure 5. Figure 5
(i) shows the example where there are three agents and
two targets. Target 1 is either absent or in Loc1, and target
2 is either absent or in Loc2. Thus, there are 4 unaffordable
states. Each agent can perform turnOff, scanEast, or scan-
West. Agents receive +45 as an immediate reward for finding

target 1, +35 for finding target 2, and −5 for failing to
find any target. Figure 5 (ii) shows the example where
there are four agents and three targets, and (iii) shows the

<table>
<thead>
<tr>
<th></th>
<th>3 agents</th>
<th>4 agents</th>
<th>5 agents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Runtime [msec]</td>
<td>20797</td>
<td>390.00</td>
<td></td>
</tr>
<tr>
<td>Expected Value</td>
<td>141.90</td>
<td>87.05</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Run time (msec)/expected value for
SPIDER and SPIDER-Comm (T = 3)

Next, we evaluate the runtime and expected reward of
SPIDER-Comm and LED-JESP-Comm. Figure 6 (a) pro-
vides runtime comparisons between SPIDER-Comm and
LID-JESP-Comm that for \(k = 2 \) and \(c = 1 \) (\(c \) is the
number of communications). In Figure 6, SPIDER-Comm
(Default policy) indicates that SPIDER-Comm uses default
policies both for the heuristic function for the current k
steps and for estimating the belief states after commu-
nication. SPIDER-Comm (MDP+Default policy) indicates
that SPIDER-Comm uses the MDP heuristic function for
the current k steps and default policies for estimating the
belief states after communication. The X-axis denotes the
number of agents, while the Y-axis indicates the amount
of time taken to compute the solution. SPIDER-Comm
(MDP+Default policy) obtains runtime improvements over
other methods in 3 agents configuration, while, in 4 and 5
agents configurations, SPIDER-Comm (Default policy) ob-
tains runtime improvements over other methods. In Figure
6 (b), We evaluate the expected reward of SPIDER-
Comm and LID-JESP-Comm in the same setting as Figure
6 (a). In 3 agents configuration, all methods obtain the
same expected values. While, in 4 and 5 agents configura-
tions, SPIDER-Comm (MDP+Default policy) obtains sig-
nificantly better expected reward over other methods.

Finally, we evaluate the run-time of SPIDER and
SPIDER-Comm (MDP+Default policy) by increasing the number of communications c for $k = 2$ in 4 agents configuration (Figure 6 (c)). When $c = 6$, the total time horizon is 20. We have obtained similar results for the run-time of other methods. We can see that our newly developed methods can obtain policies even if the length of the time horizon is large, as long as the interval between communications is small. For the original SPIDER, the maximal length of the time horizon is at most 4, and for LID-JESP, the maximal length is around 6.

6 Conclusion

In this paper, we extended ND-POMDP so that agents can periodically communicate their observation and action histories with each other, and developed two new algorithms: LID-JESP-Comm and SPIDER-Comm. To address the problem that the number of new synchronized belief states after communication will grow exponentially, we introduced an idea similar to the PBVI algorithm. Our experimental results show that these algorithms can obtain much longer policies than existing algorithms within a reasonable amount of time. Our future works include introducing a more flexible communication scheme, such as varying the interval between communications, introducing partial communications, etc.

References

