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Abstract

The min-conict heuristic (Minton et al. 1992) has
been introduced into backtracking algorithms and it-
erative improvement algorithms as a powerful heuris-
tic for solving constraint satisfaction problems. Back-
tracking algorithms become ine�cient when a bad par-
tial solution is constructed, since an exhaustive search
is required for revising the bad decision. On the other
hand, iterative improvement algorithms do not con-
struct a consistent partial solution and can revise a
bad decision without exhaustive search. However,
most of the powerful heuristics obtained through the
long history of constraint satisfaction studies (e.g., for-
ward checking (Haralick & Elliot 1980)) presuppose
the existence of a consistent partial solution. There-
fore, these heuristics can not be applied to iterative
improvement algorithms. Furthermore, these algo-
rithms are not theoretically complete.

In this paper, a new algorithm called weak-

commitment search which utilizes the min-conict
heuristic is developed. This algorithm removes the
drawbacks of backtracking algorithms and iterative
improvement algorithms, i.e., the algorithm can re-
vise bad decisions without exhaustive search, the com-
pleteness of the algorithm is guaranteed, and various
heuristics can be introduced since a consistent partial
solution is constructed. The experimental results on
various example problems show that this algorithm is
3 to 10 times more e�cient than other algorithms.

Introduction

A Constraint Satisfaction Problem (CSP) is a general
framework that can formalize various problems in AI,
and many theoretical and experimental studies have
been performed (Mackworth 1992). Recently, the min-
conict heuristic (Minton et al. 1992) has been iden-
ti�ed as a powerful heuristic for �nding one solution
of a CSP. This heuristic can be described as follows:
when deciding a variable value, it chooses the value
that minimizes the number of constraint violations be-
tween other variables. This heuristic has been applied
to backtracking algorithms (Minton et al. 1992) and
iterative improvement algorithms (Minton et al. 1992;
Morris 1993).

In backtracking algorithms, a consistent partial so-
lution is constructed for a subset of variables, and this
partial solution is extended by adding variables one by
one until a complete solution is found. In the back-
tracking algorithm that incorporates the min-conict
heuristic (min-conict backtracking), all variables are
given tentative initial values. When a variable is added
to the partial solution, its tentative initial value is re-
vised so that the new value satis�es all constraints be-
tween the partial solution, and satis�es as many con-
straints between variables that are not included in the
partial solution as possible.
The drawback of backtracking algorithms is as fol-

lows.

� One mistake in the value selection is fatal. In
min-conict backtracking, the partial solution con-
structed during the search process will not be revised
unless it is proven that there exists no complete so-
lution subsuming the partial solution. If the algo-
rithm makes a bad selection of a variable value, the
algorithm must perform an exhaustive search for the
partial solution in order to revise the bad decision.
When the problem becomes very large, doing such
an exhaustive search is virtually impossible.

On the other hand, iterative improvement algo-
rithms (Minton et al. 1992; Morris 1993; Selman,
Levesque, & Mitchell 1992) do not construct a consis-
tent partial solution. In these algorithms, a awed so-
lution containing some constraint violations is revised
by local changes until all constraints are satis�ed. The
min-conict heuristic is used as the basis for the local
changes. In these algorithms, the value of one vari-
able can be changed repeatedly without any exhaustive
search. Therefore, one mistake in the value selection
is not fatal and can be revised easily. However, the
iterative improvement algorithms have the following
drawbacks.

� The completeness of the algorithms can not
be guaranteed. We say that an algorithm is com-
plete if the algorithm is guaranteed to �nd one solu-
tion eventually when solutions exist; and when there
exists no solution, the algorithm is guaranteed to
�nd out the fact that there exists no solution and



terminate. One exception is the �ll algorithm (Mor-
ris 1993), which is guaranteed to �nd a solution if
there exists one. However, this algorithm is far less
e�cient than a similar incomplete algorithm called
the breakout algorithm (Morris 1993). Also, the �ll
algorithm will not terminate when there exists no
solution.

� Introducing other heuristics is di�cult. The
completeness of the algorithms may have only the-
oretical importance when solving large-scale prob-
lems. A more practical drawback is that we can
not apply most of the powerful heuristics obtained
through the long history of constraint satisfaction
studies (e.g., forward checking (Haralick & Elliot
1980)) to iterative improvement algorithms, since
these heuristics presuppose the existence of a con-
sistent partial solution.

In this paper, a new algorithm called weak-

commitment search which utilizes the min-conict
heuristic is developed. In this algorithm, all variables
are given tentative initial values, and variables are
added one by one to the consistent partial solution as
in the min-conict backtracking. This algorithm con-
structs a consistent partial solution, but commits to
the partial solution weakly, in contrast to backtracking
algorithms which never abandon a partial solution un-
less it turns out to be hopeless. Namely, this algorithm
commits to the partial solution as long as it can be ex-
tended. However, when there exists no value for one
variable that satis�es all constraints between the par-
tial solution, this algorithm abandons the whole partial
solution, and starts constructing a new partial solu-
tion from scratch, using the current value assignment
as new tentative initial values.

This algorithm removes the drawbacks of backtrack-
ing algorithms and iterative improvement algorithms,
i.e., the algorithm can revise bad decisions without ex-
haustive search, the completeness of the algorithm is
guaranteed, and various heuristics can be introduced
since a consistent partial solution is constructed.

In the following, we give a brief description of the
CSP, and describe the weak-commitment search algo-
rithm. Then, we show several empirical results indicat-
ing the e�ciency of this algorithm. Furthermore, we
examine the algorithm complexity and show a proba-
bilistic model of the min-conict backtracking and the
weak-commitment search.

Constraint Satisfaction Problem

A constraint satisfaction problem can be described as
follows. There exist n variables x1; x2; :::; xn, each of
which takes its value from a �nite, discrete domain
D1;D2; :::; Dn, respectively. There also exists a set of
constraints. In this paper, we assume that a constraint
is represented as a nogood, i.e., a combination of vari-

able values that is prohibited1. We represent the fact
that variable xi's value is di as a tuple (xi; di). A con-
straint f(xi; di); (xj ; dj)g means that the combination
of xi = di and xj = dj is prohibited. A solution of a
CSP is the value assignment of all variables that sat-
is�es all constraints, i.e., the assignment that is not a
superset of any nogood.

Weak-commitment Search Algorithm

The weak-commitment search algorithm is illus-
trated in Figure 1. Initially, vars-left is set to
f(x1; d1); (x2; d2); : : : ; (xn; dn)g, where di is the tenta-
tive initial value of xi. Also, partial-solution is assigned
to an empty set. This algorithm moves variables from
vars-left to partial-solution one by one.
The essential di�erence between this algorithm and

the min-conict backtracking is the shaded part in Fig-
ure 1. In min-conict backtracking, backtracking is
performed at this part and the most-recently added
variable is removed from the partial solution. In weak-
commitment search, the whole partial solution is aban-
doned, i.e., all elements of partial-solution are moved to
vars-left. Then, the search process is restarted using
the current value assignment as new tentative initial
values. It must be noted that not all variable values in
the partial solution will be revised again. Since the al-
gorithm revises only the constraint violating variables,
the variables that already satisfy all constraints will
not be revised again.
This algorithm records the abandoned partial solu-

tions in nogoods as new constraints, and avoids creat-
ing the same partial solution that has been created and
abandoned before. Therefore, the completeness of the
algorithm (always �nds a solution if one exists, and
terminates if no solution exists) is guaranteed.
In Ginsberg & Harvey (1990), a backtrack-based al-

gorithm called the iterative broadening algorithm is
presented. This algorithm avoids strong commitments
and revises bad decisions without exhaustive search.
The weak-commitment algorithm is similar to the iter-
ative broadening algorithm where the search width is
set to 1. However, the iterative broadening algorithm
iteratively widens the search width if the trial employ-
ing the initial width fails. On the other hand, the
weak-commitment search algorithm restarts the search
process without changing the search width.
We show an example of algorithm execution using

the well-known n-queens problem, placing n queens on
an n � n chess board so that these queens will not
threaten each other. In this example, we use the 4-
queens problem. This problem can be formalized as
a CSP where each variable represents the position of

1In general, a constraint is represented as an allowed

combination of variable values. In this paper, we use the
opposite representation since this representation is conve-
nient for treating an abandoned partial solution as a new
constraint. This choice of representation is inessential and
does not a�ect the evaluation results in this paper.
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Figure 1: Weak-commitment search algorithm
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Figure 2: Example of algorithm execution

a queen in each row, and the domain of a variable
is f1,2,3,4g. The initial state is illustrated in Fig-
ure 2(a). The algorithm �rst revises the position of
the �rst queen (Figure 2(b)), then revises the posi-
tion of the fourth queen (Figure 2(c)). A queen whose
position is revised is added to partial-solution. We rep-
resent a queen in partial-solution as a �lled circle. In
Figure 2(c), there exists no consistent position with
partial-solution for the third queen. Therefore, the
whole partial-solution is abandoned (Figure 2(d)). The
algorithm revises the position of the �rst queen again
(Figure 2(e)). Consequently, all constraints are satis-
�ed.

Evaluations

In this section, we compare the weak-commitment
search, the min-conict backtracking, and an iterative
improvement algorithm by experiments on typical ex-
amples of CSPs (n-queens, graph-coloring, and 3-SAT
problem).
We use the breakout algorithm (Morris 1993) as the

representative for iterative improvement algorithms.
This algorithm has a notable feature in that it does
not stop at local minima, and has been shown to be
more e�cient than other iterative improvement algo-
rithms (Morris 1993). However, this algorithm is not
complete, i.e., the algorithm can fall into an in�nite
processing loop.
We measure the number of required steps and the

number of consistency checks. Each change of one
variable value, each backtracking, and each restarting
is counted as one step. Also, one consistency check
represents the check of one combination of variable
values among which a constraint exists2. The num-
ber of consistency checks is widely used as a machine-
independent measure for constraint satisfaction algo-
rithms. For all three algorithms, in order to reduce
unnecessary consistency checks, the result of consis-
tency checks at the previous step is recorded and only
the di�erence is calculated in each step.
In order to terminate the experiments in a reason-

able amount of time, the maximum number of steps
is limited to 5000, and we interrupt any trial that ex-
ceeds this limit. For an interrupted trial, we count the
number of required steps as 5000, and use the number
of consistency checks performed until the interruption
for the evaluation.

n-queens

The �rst example problem is the n-queens problem
described in the previous section. We show the ratio of
successful trials (trials �nished within the limit), the
number of required steps, and the number of consis-
tency checks for n=10, 50, 100 in Table 1. We run
100 trials with di�erent initial values and show the

2The number of checks for newly added constraints
(abandoned partial solutions) is also included.



weak-commitment min-conict BT breakout
n ratio steps checks ratio steps checks ratio steps checks
10 100% 29.7 2292.8 100% 240.7 15482.2 100% 41.7 7065.0
50 100% 23.9 48593.5 97% 264.5 300175.0 100% 37.9 180393.5
100 100% 27.1 236821.7 99% 76.4 912465.1 100% 38.9 777051.1

Table 1: Comparison on n-queens

n ratio of trials weak- min-conict
with BT commitment BT

10 80% 35.9 299.7
50 17% 58.2 1473.4
100 2% 96.5 2563.5

Table 2: Required steps for trials with backtrack-
ing/restarting

average3. These initial values are generated by the
greedy method described in Minton et al. (1992).

As shown in Table 1, for all cases, the weak-
commitment search is more e�cient than the min-
conict backtracking and the breakout algorithm. We
can see that the breakout algorithm does a lot more
consistency checks for each step compared with the
weak-commitment search. This fact can be explained
as follows. When choosing a variable to change its
value, the weak-commitment search (and the min-
conict backtracking) can choose any of the constraint
violating variables. On the other hand, the breakout
algorithm must choose a variable so that the number
of constraint violations can be reduced by changing
its value. Therefore, in the worst case (when the cur-
rent assignment is a local minimum), the breakout al-
gorithm has to check all the values for all constraint
violating variables4.

For the trials without backtracking/restarting, the
behaviors of the weak-commitment search and the min-
conict backtracking are exactly the same. We show
the ratio of trials with backtracking/restarting, and
the average number of steps for these trials in Table 2.
We can see that the numbers of required steps for the
min-conict backtracking in trials with backtracking
are very large and dominate the average of all trials.

3In Minton et al. (1992), it is reported that the min-
conict backtracking can solve the 100-queens problem in
around 25 steps. In our experiment, there exists one trial
that exceeds 5000 steps and the result of this trial becomes
the dominant factor in the average. The average except this
trial is almost identical to the result reported in Minton et

al. (1992). For n � 1000, the result for the min-conict
backtracking and weak-commitment search are exactly the
same, and almost identical to the result reported in Minton
et al. (1992).

4If the current assignment is not a local minimum, the
breakout algorithm does not have to check all variables.

Graph-coloring

The graph-coloring problem involves painting nodes
in a graph by k di�erent colors so that any two nodes
connected by an arc do not have the same color. We
randomly generate a problem with n nodes and m arcs
by the method described in Minton et al. (1992), so
that the graph is connected and the problem has a
solution. We evaluate the problem n = 120; 180; 240,
where m = n�2 and k=3. This parameter setting cor-
responds to the \sparse" problems for which Minton et
al. (1992) report poor performance of the min-conict
heuristic. We generate 10 di�erent problems, and for
each problem, 10 trials with di�erent initial values are
performed (100 trials in all). As in the n-queens prob-
lem, the initial values are set by the greedy method.
We introduce two kinds of heuristics (forward check-

ing and �rst-fail principle (Haralick & Elliot 1980))
into the min-conict backtracking and the weak-
commitment search, i.e., for each variable, we keep the
list of values consistent with the partial solution, and
when selecting a variable to be added to the partial
solution, we select the variable that has the least num-
ber of consistent values. Also, the variable that has
only one consistent value is included into the partial
solution immediately. Furthermore, before including
a variable into the partial solution, we check whether
each of remaining variables (variables in vars-left) has
at least one consistent value with the partial solution,
and avoid selecting a value that causes immediate fail-
ure. Table 3 shows evaluation results for the three
algorithms.
Although Minton et al. (1992) report poor perfor-

mance for the min-conict backtracking for these prob-
lems, by introducing the two heuristics (forward check-
ing and �rst-fail principle), the performance of the
min-conict backtracking becomes relatively good in
our evaluation. However, there exist several trials in
which a mistake in the value selection becomes fatal,
and the min-conict backtracking fails to �nd a solu-
tion within the limit. Therefore, the weak-commitment
search is more e�cient than the min-conict backtrack-
ing.
For these problems, the forward checking and

�rst-fail principle are very e�cient and the weak-
commitment search is about 10 times more e�cient
than the breakout algorithm. We can see that the ca-
pability of accommodating such powerful heuristics is
a great advantage of the weak-commitment search over
iterative improvement algorithms.



weak-commitment min-conict BT breakout
n ratio steps checks ratio steps checks ratio steps checks

120 100% 28.9 2118.8 99% 78.1 2931.2 100% 198.4 14620.8
180 100% 41.3 3178.9 99% 98.5 5548.5 100% 352.3 32139.3
240 100% 71.9 5988.6 95% 443.6 42164.5 100% 601.2 66892.5

Table 3: Comparison on graph-coloring

weak-commitment min-conict BT breakout
n ratio steps checks ratio steps checks ratio steps checks

300 100% 187.7 24357.0 55% 2717.7 1075986.1 100% 828.0 133911.5
500 100% 359.4 47376.0 15% 4428.8 2368672.5 93% 1596.2 352095.8
700 100% 633.2 83345.1 0% | | 77% 2740.2 746752.5
900 100% 980.3 132731.7 0% | | 70% 3006.8 1032267.3
1100 100% 1246.8 168845.9 0% | | 69% 3384.5 1454297.9

Table 4: Comparison on 3-SAT problem

3-SAT Problem

For the third example problem, we use the 3-SAT prob-
lem, which is commonly used as a benchmark for itera-
tive improvement algorithms. This problem is to assign
truth values for n boolean variables that satisfy con-
straints represented as clauses. Each clause consists of
three variables. The number of clauses divided by the
number of variables is called the clause density, and
the value 4.3 has been identi�ed as the critical value
that produces particularly di�cult problems (Mitchell,
Selman, & Levesque 1992).
Table 4 shows results of changing the number of vari-

ables n by setting the clause density to 4.3. We use the
same method described in Morris (1993) to generate
a random problem that has a solution. We generate
10 di�erent problems, and for each problem, 10 trials
with di�erent initial values5 are performed (100 trials
in all). As in the case of the graph-coloring problems,
we introduce the two heuristics into the min-conict
backtracking and the weak-commitment search.
As shown in Table 4, the min-conict backtracking

is very ine�cient for this problem. On the other hand,
the weak-commitment search is around 10 times more
e�cient than the breakout algorithm for larger n. For
this problem, the e�ect of the heuristics is not power-
ful enough to completely avoid bad decisions. Such less
powerful heuristics are of little use to the min-conict
backtracking. On the other hand, they are useful for
the weak-commitment search algorithm since the vari-
able values are iteratively revised by restarting.

Discussions

Algorithm Complexity

The worst-case time complexity of the weak-
commitment search becomes exponential in the num-

5These initial values are set by the greedy method as in
the case of the other problems.

ber of variables n. This result seems inevitable since
constraint satisfaction is NP-complete in general. The
space complexity of the weak-commitment search is
determined by the number of newly added nogoods
(constraints) to nogoods, i.e., the number of restart-
ings. In the worst case, this is also exponential in n.
On the other hand, the space complexity of the back-
tracking algorithm is linear to n. This result seems
inevitable since the weak-commitment search changes
the search order exibly while guaranteeing the com-
pleteness of the algorithm. This is also the case for the
�ll algorithm described in Morris (1993), whose worst-
case space complexity becomes exponential in n.
However, the number of restartings will never ex-

ceed the number of required steps. Therefore, we can
assume that the space complexity would never become
a problem in practice as long as the problem can be
solved within a reasonable amount of time. Also, the
nogood that is a superset of other nogoods is redun-
dant and can be removed from nogoods.
Furthermore, we can restrict the number of recorded

nogoods. In that case, the theoretical completeness can
not be guaranteed. However, in practice, the weak-
commitment search algorithm can still �nd a solution
for all example problems when the number of recorded
nogoods is restricted so that only 10 of the most re-
cently found nogoods are recorded.

Probabilistic Model

In order to show theoretical evidence that the weak-
commitment search is more e�cient than the min-
conict backtracking, we use a simple probabilistic
model as follows. Let us assume that the probabil-
ity for �nding a solution without any backtracking in
the min-conict backtracking is given by the constant
value p, regardless of the initial values. Also, let us
assume that the expected number of steps for trials
without backtracking is given by ns (ns � n), the ex-



pected number of steps for trials with backtracking is
given by B, and the expected number of steps until
the occurrence of the �rst backtracking is given by
nb (nb � n). Then, the expected number of steps
for the min-conict backtracking can be represented
as nsp+ Bq, where q = 1 � p.

On the other hand, in the weak-commitment search,
a solution can be found without any restarting with
the probability p, and the expected number of steps
in this case is given by ns. Also, the probability that
a solution can be found after one restarting is given
by pq, and the expected number of steps is given by
ns+nb. In the same way, the probability that a solution
can be found after k restartings is given by pqk, and the
expected number of steps is given by ns + knb. This
probability distribution of the number of restartings
is identical to the well-known geometric distribution,
and the expected number of restartings is given by q=p.
Therefore, the expected number of steps can be given
by ns + nbq=p.

The condition that the weak-commitment search is
more e�cient than the min-conict backtracking is
nsp+Bq > ns+ nbq=p. By transforming this formula,
we obtain p > nb=(B � ns). Since we can assume that
B� ns, and nb � n, we obtain the su�cient condition
p > n=B, i.e., if the probability of �nding a solution
without backtracking is larger than the ratio of the
number of variables and the number of steps for the
trials with backtracking, the weak-commitment search
is more e�cient than the min-conict backtracking.

The experimental results in the previous section
show that the min-conict backtracking can �nd a so-
lution e�ciently without backtracking in many trials,
but the number of required steps for trials with back-
tracking becomes very large. Therefore, we can assume
that the condition p > n=B is satis�ed in many cases.
For example, from the experimental results in Table 2,
we can assume that B for the 50-queens problem is
around 1473.4, and p is around 0.83 (where q is 0.17).
Then, n=B is around 0.034. This value is much smaller
than the expected value of p (0.83).

In reality, the probability of �nding a solution with-
out backtracking is a�ected by the initial values. In the
weak-commitment search, when restarting, the current
value assignment is used as the new tentative initial
values. Therefore, by repeating the restartings, we can
expect the value assignment to become close to the �-
nal solution; thus, the probability of �nding a solution
without restartings increases. In such a case, even if
the average probability of �nding a solution without
backtracking is very small and the condition p > n=B

is not satis�ed, the weak-commitment search can be
more e�cient than the min-conict backtracking. For
example, although the min-conict backtracking never
�nds a solution without backtracking in the 3-SAT
problem (Table 4), the weak-commitment search can
�nd a solution. This is because the value assignment is
iteratively improved in the weak-commitment search.

Conclusions

We have presented the weak-commitment search algo-
rithm for solving CSPs. This algorithm can revise bad
decisions without exhaustive search, and the complete-
ness of the algorithm is guaranteed. By experimental
results, we have shown that this algorithm is 3 to 10
times more e�cient than the breakout algorithm and
the min-conict backtracking.
Our future work includes showing the e�ectiveness

of this algorithm in practical application problems,
developing a theoretical model to compare the per-
formance of the weak-commitment search and itera-
tive improvement algorithms, and applying the weak-
commitment search algorithm to distributed constraint
satisfaction problems, in which variables and con-
straints are distributed among multiple problem solv-
ing agents (Yokoo et al. 1992).
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